Subthreshold and Gate Leakage Current Analysis and Reduction in VLSI Circuits


Book Description

"CMOS technology has scaled aggressively over the past few decades in an effort to enhance functionality, speed and packing density per chip. As the feature sizes are scaling down to sub-100nm regime, leakage power is increasing significantly and is becoming the dominant component of the total power dissipation. Major contributors to the total leakage current in deep submicron regime are subthreshold and gate tunneling leakage currents. The leakage reduction technique developed so far were mostly devoted to reducing subthreshold leakage. However, at sub-65nm feature sizes, gate leakage current grows faster and is expectedd to surpass subthreshold leakage current. In this work, an extensive analysis of the circuit level characteristics of subthreshold and gate leakage currents is performed at 45nm and 32nm feature sizes. The analysis provides several key observations on the interdependency of gate and subthreshold leakages currents. Based on these observations, a new leakage reduction technique is proposed that optimizes both the leakage currents. This technique identifies minimum leakage vectors for a given circuit based on the number of transistors in OFF state and their position in the stack. The effectiveness of the proposed technique is compared to most of the mainstream leakage reduction techniques by implementing them on ISCAS89 benchmark circuits. The proposed leakage reduction technique proved to be more effective in reducing gate leakage current than subthreshold leakage current. However, when combined with dual-threshold and variable-threshold CMOS techniques, substantial subthreshold leakage current reduction was also achieved. A total savings of 53% for subthreshold leakage current and 26% for gate leakage current are reported."--Abstract.




Power Management of Digital Circuits in Deep Sub-Micron CMOS Technologies


Book Description

This book provides an in-depth overview of design and implementation of leakage reduction techniques. The focus is on applicability, technology dependencies, and scalability. The book mainly deals with circuit design but also addresses the interface between circuit and system level design on the one side and between circuit and physical design on the other side.




Leakage in Nanometer CMOS Technologies


Book Description

Covers in detail promising solutions at the device, circuit, and architecture levels of abstraction after first explaining the sensitivity of the various MOS leakage sources to these conditions from the first principles. Also treated are the resulting effects so the reader understands the effectiveness of leakage power reduction solutions under these different conditions. Case studies supply real-world examples that reap the benefits of leakage power reduction solutions as the book highlights different device design choices that exist to mitigate increases in the leakage components as technology scales.




Fundamentals of Modern VLSI Devices


Book Description

Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally renowned authors highlight the intricate interdependencies and subtle trade-offs between various practically important device parameters, and provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model and SiGe-base bipolar devices.







Low-Power Deep Sub-Micron CMOS Logic


Book Description

The strong interaction between the demand for increasing chip functionality and data-processing speeds, and technological trends in the integrated circuit industry, like e.g. shrinking device geometry, growing chip area and increased transistor switching speeds, cause a huge increase in power dissipation for deep sub-micron digital CMOS circuits. Low-Power Deep Sub-micron CMOS Logic, Sub-threshold Current Reduction classifies all power dissipation sources in digital CMOS circuits and provides for a systematic approach of power reduction techniques. A clear distinction has been made between power dissipated to perform a calculation in a certain time frame, i.e. functional power dissipation, and power dissipated even when a circuit is idle, i.e. parasitical power dissipation. The threshold voltage level forms an important link between the functional and the parasitical power dissipation. Since for high data-processing speeds the threshold voltage needs to be low, whereas for low sub-threshold leakage currents it needs to be high. The latter is extremely important for battery operated circuits in standby modes. Therefore, a separate classification of sub-threshold current reduction techniques is presented showing existing and new circuit topologies. Low-Power Deep Sub-micron CMOS Logic, Sub-threshold Current Reduction is a valuable book for researchers, designers as well as students in the field of low-power digital design. Power dissipation is discussed from a fundamental, quantum mechanical and a practical point of view. Theory is accompanied with practical circuit implementations and measurement results.




Introduction to VLSI Circuits and Systems


Book Description

CD-ROM contains: AIM SPICE (from AIM Software) -- Micro-Cap 6 (from Spectrum Software) -- Silos III Verilog Simulator (from Simucad) -- Adobe Acrobat Reader 4.0 (from Adobe).




Low-Power VLSI Circuits and Systems


Book Description

The book provides a comprehensive coverage of different aspects of low power circuit synthesis at various levels of design hierarchy; starting from the layout level to the system level. For a seamless understanding of the subject, basics of MOS circuits has been introduced at transistor, gate and circuit level; followed by various low-power design methodologies, such as supply voltage scaling, switched capacitance minimization techniques and leakage power minimization approaches. The content of this book will prove useful to students, researchers, as well as practicing engineers.




Low-Power CMOS Circuits


Book Description

The power consumption of microprocessors is one of the most important challenges of high-performance chips and portable devices. In chapters drawn from Piguet's recently published Low-Power Electronics Design, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools addresses the design of low-power circuitry in deep submicron technologies. It provides a focused reference for specialists involved in designing low-power circuitry, from transistors to logic gates. The book is organized into three broad sections for convenient access. The first examines the history of low-power electronics along with a look at emerging and possible future technologies. It also considers other technologies, such as nanotechnologies and optical chips, that may be useful in designing integrated circuits. The second part explains the techniques used to reduce power consumption at low levels. These include clock gating, leakage reduction, interconnecting and communication on chips, and adiabatic circuits. The final section discusses various CAD tools for designing low-power circuits. This section includes three chapters that demonstrate the tools and low-power design issues at three major companies that produce logic synthesizers. Providing detailed examinations contributed by leading experts, Low-Power CMOS Circuits: Technology, Logic Design, and CAD Tools supplies authoritative information on how to design and model for high performance with low power consumption in modern integrated circuits. It is a must-read for anyone designing modern computers or embedded systems.