Productive Biofilms


Book Description

This book review series presents current trends in modern biotechnology. The aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Volumes are organized topically and provide a comprehensive discussion of developments in the respective field over the past 3-5 years. The series also discusses new discoveries and applications. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. In general, special volumes are edited by well-known guest editors. The series editor and publisher will however always be pleased to receive suggestions and supplementary information. Manuscripts are accepted in English.




Mathematical Modeling of Biofilms


Book Description

Over 90% of bacterial biomass exists in the form of biofilms. The ability of bacteria to attach to surfaces and to form biofilms often is an important competitive advantage for them over bacteria growing in suspension. Some biofilms are "good" in natural and engineered systems; they are responsible for nutrient cycling in nature and are used to purify waters in engineering processes. Other biofilms are "bad" when they cause fouling and infections of humans and plants. Whether we want to promote good biofilms or eliminate bad biofilms, we need to understand how they work and what works to control them. Mathematical Modeling of Biofilms provides guidelines for the selection and use of mathematical models of biofilms. The whole range of existing models - from simple analytical expressions to complex numerical models - is covered. The application of the models for the solution of typical problems is demonstrated, and the performance of the models is tested in comparative studies. With the dramatic evolution of the computational capacity still going on, modeling tools for research and practice will become more and more significant in the next few years. This report provides the foundation to understand the models and to select the most appropriate one for a given use. Mathematical Modeling of Biofilms gives a state-of-the-art overview that is especially valuable for educating students, new biofilm researchers, and design engineers. Through a series of three benchmark problems, the report demonstrates how to use the different models and indicates when simple or highly complex models are most appropriate. This is the first report to give a quantitative comparison of existing biofilm models. The report supports model-based design of biofilm reactors. The report can be used as basis for teaching biofilm-system modeling. The report provides the foundation for researchers seeking to use biofilm modeling or to develop new biofilm models. Scientific and Technical Report No.18




Microbial Biofilms


Book Description

Biochemistry and ecology of biofilms from industrial, medical and other viewpoints.




Fundamentals of Biofilm Research


Book Description

The six years that have passed since the publication of the first edition have brought significant advances in both biofilm research and biofilm engineering, which have matured to the extent that biofilm-based technologies are now being designed and implemented. As a result, many chapters have been updated and expanded with the addition of sections




Biofilms in Wastewater Treatment


Book Description

The central theme of the book is the flow of information from experimental approaches in biofilm research to simulation and modeling of complex wastewater systems. Probably the greatest challenge in wastewater research lies in using the methods and the results obtained in one scientific discipline to design intelligent experiments in other disciplines, and eventually to improve the knowledge base the practitioner needs to run wastewater treatment plants. The purpose of Biofilms in Wastewater Treatment is to provide engineers with the knowledge needed to apply the new insights gained by researchers. The authors provide an authoritative insight into the function of biofilms on a technical and on a lab-scale, cover some of the exciting new basic microbiological and wastewater engineering research involving molecular biology techniques and microscopy, and discuss recent attempts to predict the development of biofilms. This book is divided into 3 sections: Modeling and Simulation; Architecture, Population Structure and Function; and From Fundamentals to Practical Application, which all start with a scientific question. Individual chapters attempt to answer the question and present different angles of looking at problems. In addition there is an extensive glossary to familiarize the non-expert with unfamiliar terminology used by microbiologists and computational scientists. The colour plate section of this book can be downloaded by clicking here. (PDF Format 1 MB)




Biofilms: Extracellular Bastions of Bacteria


Book Description

This book is a printed edition of the Special Issue "Biofilms: Extracellular Bastions of Bacteria" that was published in IJMS




Advanced Methods and Mathematical Modeling of Biofilms


Book Description

Advanced Mathematical Modelling of Biofilms and its Applications covers the concepts and fundamentals of biofilms, including sections on numerical discrete and numerical continuum models and different biofilms methods, e.g., the lattice Boltzmann method (LBM) and cellular automata (CA) and integrated LBM and individual-based model (iBM). Other sections focus on design, problem-solving and state-of-the-art modelling methods. Addressing the needs to upgrade and update information and knowledge for students, researchers and engineers on biofilms in health care, medicine, food, aquaculture and industry, this book also covers areas of uncertainty and future needs for advancing the use of biofilm models. Over the past 25-30 years, there have been rapid advances in various areas of computer technologies, applications and methods (e.g. complex programming and algorithms, lattice Boltzmann method, high resolution visualization and high-performance computation). These new and emerging technologies are providing unprecedented opportunities to develop modeling frameworks of biofilms and their applications. - Introduces state-of-the-art methods of biofilm modeling, such as integrated lattice Boltzmann method (LBM) and cellular automata (CA) and integrated LBM and individual-based model (iBM) - Provides recent progress in more powerful tools for a deeper understanding of biofilm complexity by implementing state-of-the art biofilm modeling programs - Compares advantages and disadvantages of different biofilm models and analyzes some specific problems for model selection - Evaluates novel process designs without the cost, time and risk of building a physical prototype of the process to identify the most promising designs for experimental testing




Microbial Biofilms


Book Description

Microbial Biofilms: Challenges and Advances in Metabolomic Study is a volume in the Advances in Biotechnology and Bioengineering Series. The volume covers the metabolomic characteristics of bacterial biofilms and examines the techniques used in the analysis of the metabolomics of the biofilm, its formation, and related infections. The book includes the metabolomics study of various types of biofilms and details new strategies in targeting metabolic pathways for inhibiting the biofilm. The book also describes various types of metabolomics studies like metabolomics of oral biofilm and metabolomics of biofilm by nosocomial microbes. It also points out the recent advancements on various aspects of metabolomics studies pertaining to biofilms, related infections, their pathogenesis, and present-day treatment strategies. Microbial Biofilms: Challenges and Advances in Metabolomic Study is a helpful resource to scientists and researchers engaged in biofilm studies, precisely on the metabolomic changes at molecular level occurring in the participating microorganisms. It is also fascinating and thought provoking for the clinicians and health professionals actively involved in the treatment of biofilm mediated chronic infections, since it depicts the pathogenic consequences of the small molecular interactions of the metabolites in biofilm. - Discusses recent trends in biofilms research - Details newer strategies in treating the biofilm by targeting metabolic pathways - Covers chronic infections caused by biofilm and their metabolomics studies - Examines various analytical aspects on the metabolomics study of biofilm as well as how metabolomics regulate the formation of the biofilm - Incorporates relevant case studies




Microbial Biofilms


Book Description

An examination of the research and translational application to prevent and treat biofilm-associated diseases In the decade since the first edition of Microbial Biofilms was published, the interest in this field has expanded, spurring breakthrough research that has advanced the treatment of biofilm-associated diseases. This second edition takes the reader on an exciting, extensive review of bacterial and fungal biofilms, ranging from basic molecular interactions to innovative therapies, with particular emphasis on the division of labor in biofilms, new approaches to combat the threat of microbial biofilms, and how biofilms evade the host defense. Chapters written by established investigators cover recent findings, and contributions from investigators new to the field provide unique and fresh insights. Specifically, Microbial Biofilms provides state-of-the-art research in the field of bacterial and fungal biofilms detailed descriptions of the in vitro and in vivo models available to evaluate microbial biofilms future areas of research and their translational and clinical applications Microbial Biofilms is a useful reference for researchers and clinicians. It will also provide insight in the dynamic field of microbial biofilms for graduate and postgraduate students.




Microbial Biofilms


Book Description

In the book Microbial Biofilms: Importance and applications, eminent scientists provide an up-to-date review of the present and future trends on biofilm-related research. This book is divided with four subdivisions as biofilm fundamentals, applications, health aspects, and their control. Moreover, this book also provides a comprehensive account on microbial interactions in biofilms, pyocyanin, and extracellular DNA in facilitating Pseudomonas aeruginosa biofilm formation, atomic force microscopic studies of biofilms, and biofilms in beverage industry. The book comprises a total of 21 chapters from valued contributions from world leading experts in Australia, Bulgaria, Canada, China, Serbia, Germany, Italy, Japan, the United Kingdom, the Kingdom of Saudi Arabia, Republic of Korea, Mexico, Poland, Portugal, and Turkey. This book may be used as a text or reference for everyone interested in biofilms and their applications. It is also highly recommended for environmental microbiologists, soil scientists, medical microbiologists, bioremediation experts, and microbiologists working in biocorrosion, biofouling, biodegradation, water microbiology, quorum sensing, and many other related areas. Scientists in academia, research laboratories, and industry will also find it of interest.