Applied Pyrolysis Handbook


Book Description

Analytical pyrolysis allows scientists to use routine laboratory instrumentation for analyzing complex, opaque, or insoluble samples more effectively than other analytical techniques alone. Applied Pyrolysis Handbook, Second Edition is a practical guide to the application of pyrolysis techniques to various samples and sample types for a dive




Analytical Pyrolysis


Book Description

Analytical Pyrolysis: Techniques and Applications provides an overview of analytical pyrolysis applied to geochemistry, biology, polymers, and biomass. This book presents a survey of basic phenomena, data analysis, and instrumentation. Organized into 15 chapters, this book begins with an overview of mass spectrometry in developing ion sources that are applicable to materials that either have low volatility, high molecular weight, are thermally unstable or some combination of the three. This text then examines the role of thermal processes in many of the desorption methods. Other chapters consider desorption techniques, which are closely allied to analytical pyrolysis. This book discusses as well the Flash Vacuum Pyrolysis/Field Ionization Mass Spectrometry (FVP/FIMS) technique, which is based on a direct link between the pyrolysis unit and a double focusing mass spectrometer. The final chapter deals with inert atmosphere poly (vinyl chloride) (PVC) thermal decomposition. This book is a valuable resource for chemists and researchers.




Analytical Pyrolysis of Synthetic Organic Polymers


Book Description

Analytical Pyrolysis of Synthetic Organic Polymers is a follow-up to Analytical Pyrolysis of Natural Organic Polymers, which is volume 20 of the series. The main focus of the book is on practical applications of analytical pyrolysis in synthetic organic polymer identification and characterization. The first part of the book has five chapters including an introduction, a discussion on physico-chemistry of thermal degradation of synthetic polymers and on instrumentation used in analytical pyrolysis, a chapter discussing what type of information can be obtained from analytical pyrolysis, and a chapter dedicated to the analysis and characterization of synthetic polymers.The second part systematically covers the analytical pyrolysis of various classes of synthetic polymers. Some theoretical background for the understanding of polymer structure using analytical pyrolysis is also discussed.* Includes broad coverage of organic synthetic macromolecules* Focuses on physico-chemistry of thermal degradation, and the analytical pyrolysis of various classes of synthetic polymers* Is well written and suitable for both researchers and chemists working in analytical chemistry or in synthetic polymers




Analytical Pyrolysis of Natural Organic Polymers


Book Description

Analytical pyrolysis is one of the many tools utilized for the study of natural organic polymers. This books describes in three parts the methodology of analytical pyrolysis, the results of pyrolysis for a variety of biopolymers, and several practical applications of analytical pyrolysis on natural organic polymers and their composite materials. Analytical pyrolysis methodology covers two distinct subjects, the instrumentation used for pyrolysis and the analytical methods that are applied for the analysis of the pyrolysis products. A variety of pyrolytic techniques and of analytical instruments commonly coupled with pyrolysis devices are given.The description of the results of pyrolysis for biopolymers and some chemically modified natural organic polymers is the core of the book. The main pyrolysis products of numerous compounds as well as the proposed mechanisms for their pyrolysis are described. In this part an attempt is made to present as much as possible the chemistry of the pyrolytic process of natural organic polymers.The applications of analytical pyrolysis include topics such as polymer detection used for example in forensic science, structure elucidation of specific polymers, and identification of small molecules present in polymers (anti-oxidants, plasticizers, etc.). Also, the degradation during heating is a subject of major interest in many practical applications regarding the physical properties of polymers. The applications to composite polymeric materials are in the fields of classification of microorganisms, study of a variety of biological samples, study of fossil materials, etc. Analytical pyrolysis can also be used for obtaining information on the burning area generate pyrolysates that have complex compositions. Their analysis is important in connection with health issues, environmental problems, and taste of food and cigarettes.Features of this book:• Presents analytical pyrolysis as a uniform subject and not as a conglomerate of scientific papers.• Puts together in an organized manner a large volume of available information in this specific field.• Provides original results which address subjects with relatively scarce information in literature.• Gives original views on subjects such as the parallel between the pyrolytic process and the ion fragmentation in mass spectrometry.• Includes the role of pyrolysis in the burning process.The three parts of the book are covered in 18 chapters, each divided into sections. Some sections are further divided by particular subjects. References are given for each chapter, and an effort has been made to include as much as possible from the available representative information. A few unpublished personal results are also included.




Pyrolysis - GC/MS Data Book of Synthetic Polymers


Book Description

In this data book, both conventional Py-GC/MS where thermal energy alone is used to cause fragmentation of given polymeric materials and reactive Py-GC/MS in the presence of organic alkaline for condensation polymers are compiled. Before going into detailed presentation of the data, however, acquiring a firm grip on the proper understanding about the situation of Py-GC/MS would promote better utilization of the following pyrolysis data for various polymers samples. This book incorporates recent technological advances in analytical pyrolysis methods especially useful for the characterization of 163 typical synthetic polymers. The book briefly reviews the instrumentation available in advanced analytical pyrolysis, and offers guidance to perform effectually this technique combining with gas chromatography and mass spectrometry. Main contents are comprehensive sample pyrograms, thermograms, identification tables, and representative mass spectra (MS) of pyrolyzates for synthetic polymers. This edition also highlights thermally-assisted hydrolysis and methylation technique effectively applied to 33 basic condensation polymers. - Coverage of Py-GC/MS data of conventional pyrograms and thermograms of basic 163 kinds of synthetic polymers together with MS and retention index data for pyrolyzates, enabling a quick identification - Additional coverage of the pyrograms and their related data for 33 basic condensation polymers obtained by the thermally-assisted hydrolysis and methylation technique - All compiled data measured under the same experimental conditions for pyrolysis, gas chromatography and mass spectrometry to facilitate peak identification - Surveyable instant information on two facing pages dedicated to the whole data of a given polymer sample




Analytical Pyrolysis


Book Description

Analytical pyrolysis deals with the structural identification and quantitation of pyrolysis products with the ultimate aim of establishing the identity of the original material and the mechanisms of its thermal decomposition. The pyrolytic process is carried out in a pyrolyzer interfaced with analytical instrumentation such as gas chromatography (GC), mass spectrometry (MS), gas chromatography coupled with mass spectrometry (GC/MS), or with Fourier-transform infrared spectroscopy (GC/FTIR). By measurement and identification of pyrolysis products, the molecular composition of the original sample can often be reconstructed.This book is the outcome of contributions by experts in the field of pyrolysis and includes applications of the analytical pyrolysis-GC/MS to characterize the structure of synthetic organic polymers and lignocellulosic materials as well as cellulosic pulps and isolated lignins, solid wood, waste particle board, and bio-oil. The thermal degradation of cellulose and biomass is examined by scanning electron micrography, FTIR spectroscopy, thermogravimetry (TG), differential thermal analysis, and TG/MS. The calorimetric determination of high heating values of different raw biomass, plastic waste, and biomass/plastic waste mixtures and their by-products resulting from pyrolysis is described.




Pyrolysis-gas Chromatography: Mass Spectrometry Of Polymeric Materials


Book Description

The methodology of analytical pyrolysis-GC/MS has been known for several years, but is seldom used in research laboratories and process control in the chemical industry. This is due to the relative difficulty of interpreting the identified pyrolysis products as well as the variety of them. This book contains full identification of several classes of polymers/copolymers and biopolymers that can be very helpful to the user. In addition, the practical applications can encourage analytical chemists and engineers to use the techniques explored in this volume.The structure and the functions of various types of pyrolyzers and the results of the pyrolysis-gas chromatographic-mass spectrometric identification of synthetic polymers/copolymers and biopolymers at 700°C are described. Practical applications of these techniques are also included, detailing the analysis of microplastics, failure analysis in the automotive industry and solutions for technological problems.







Mass Spectrometry Handbook


Book Description

Due to its enormous sensitivity and ease of use, mass spectrometry has grown into the analytical tool of choice in most industries and areas of research. This unique reference provides an extensive library of methods used in mass spectrometry, covering applications of mass spectrometry in fields as diverse as drug discovery, environmental science, forensic science, clinical analysis, polymers, oil composition, doping, cellular research, semiconductor, ceramics, metals and alloys, and homeland security. The book provides the reader with a protocol for the technique described (including sampling methods) and explains why to use a particular method and not others. Essential for MS specialists working in industrial, environmental, and clinical fields.




Characterization of Lignocellulosic Materials


Book Description

Lignocellulosic materials are a natural, abundant and renewable resource essential to the functioning of industrial societies and critical to the development of a sustainable global economy. As wood and paper products, they have played an important role in the evolution of civilization. Improvement of the quality and manufacturing efficiency of such products has often been hampered by the lack of understanding of the complex structures and chemical compositions of the materials. Due to increasing economic and environmental issues concerning the use of petrochemicals, lignocellulosic materials will be relied upon as feedstock for the production of chemicals, fuels and biocompatible materials. Significant progress has been made to use lignocellulosic materials for the production of fuel ethanol and as a reinforcing component in polymer composites. Effective and economical methods for such uses, however, remain underdeveloped, partly due to the difficulties encountered in the characterization of the structures of native lignocelluloses and lignocelluloses-based materials. Improved methods for the characterization of lignocellulosic materials are needed. Characterization of Lignocellulosic Materials covers recent advances in the characterization of wood, pulp fibres and papers. It also describes the analyses of native and modified lignocellulosic fibres and materials using a range of advanced techniques such as time-of-flight secondary ion mass spectrometry, 2D heteronuclear single quantum correlation NMR, and Raman microscopy. The book provides a survey of state-of-the-art characterization methods for lignocellulosic materials, for both academic and industrial researchers who work in the fields of wood and paper, lignocelluloses-based composites and polymer blends, and bio-based fuels and materials.