Analytical Applications of Nuclear Techniques


Book Description

The IAEA has compiled this overview of current applications of nuclear analytical techniques (NATs). The contributions included in this book describe a variety of nuclear techniques and applications, such as those in the fields of environment and health, industrial processes, non-destructive testing, forensic and archaeological investigations, cosmochemistry and method validation. The techniques covered range from classical instrumental neutron activation analysis (INAA), its radiochemical derivative RNAA, in-beam methods such as prompt y neutron activation analysis (PGNAA) and accelerator mass spectrometry (AMS), to X ray fluorescence (XRF) and proton induced X ray emission (PIXE) spectroscopy. Isotopic techniques to investigate element behaviour in biology and medicine, and also to validate other non-nuclear analytical techniques, are described. Destructive and non-destructiveapproaches are presented, along with their use to investigate very small and very large samples, archaeological samples and extraterrestrial samples. Several nuclear analytical applications in industry are described that have considerable socioeconomic impact wherever they can be implemented.



















Nuclear Analytical Chemistry


Book Description










Nuclear Reactor Analysis


Book Description

Classic textbook for an introductory course in nuclear reactor analysis that introduces the nuclear engineering student to the basic scientific principles of nuclear fission chain reactions and lays a foundation for the subsequent application of these principles to the nuclear design and analysis of reactor cores. This text introduces the student to the fundamental principles governing nuclear fission chain reactions in a manner that renders the transition to practical nuclear reactor design methods most natural. The authors stress throughout the very close interplay between the nuclear analysis of a reactor core and those nonnuclear aspects of core analysis, such as thermal-hydraulics or materials studies, which play a major role in determining a reactor design.