Analytical Elements of Mechanics


Book Description

Analytical Elements of Mechanics, Volume 1, is the first of two volumes intended for use in courses in classical mechanics. The books aim to provide students and teachers with a text consistent in content and format with the author’s ideas regarding the subject matter and teaching of mechanics, and to disseminate these ideas. The book opens with a detailed exposition of vector algebra, and no prior knowledge of this subject is required. This is followed by a chapter on the topic of mass centers, which is presented as a logical extension of concepts introduced in connection with centroids. A theory of moments and couples is constructed without reference to forces, these being mentioned only in illustrative examples. This is done because it eventually becomes necessary to apply the theory to systems of vectors which are not forces, such as momenta and impulses. Equilibrium is discussed in the final chapter, preceded by extended examination of the concept of force.




Analytical Elements of Mechanisms


Book Description

This book describes methods and algorithms for the analysis and design of kinematic systems.




Analytical Elements of Mechanics


Book Description

Analytical Elements of Mechanics, Volume 2: Dynamics focuses on the processes, methodologies, approaches, and technologies involved in classical mechanics. The book first offers information on the differentiation of vectors, including vector functions of a scalar variable; derivatives of sums and products; vector tangents of a space curve; vector binormals of a space curve; and Taylor's theorem for vector functions. The manuscript then ponders on kinematics, as well as angular velocity and acceleration, absolute and relative velocity and acceleration, and rates of change of orientation of a rigid body. The text examines second moments and laws of motion. Discussions focus on second moments of sets of particles and continuous bodies, second moments of a point, motions of rigid bodies, and linear and angular momentum. The publication is a dependable reference for readers interested in the dynamics of the analytical elements of mechanics.







Mechanical Engineer's Handbook


Book Description

The Mechanical Engineer's Handbook was developed and written specifically to fill a need for mechanical engineers and mechanical engineering students. With over 1000 pages, 550 illustrations, and 26 tables the Mechanical Engineer's Handbook is comprehensive, compact and durable. The Handbook covers major areas of mechanical engineering with succinct coverage of the definitions, formulas, examples, theory, proofs, and explanations of all principle subject areas. The Handbook is an essential, practical companion for all mechanical engineering students with core coverage of nearly all relevant courses included. Also, anyone preparing for the engineering licensing examinations will find this handbook to be an invaluable aid. Useful analytical techniques provide the student and practicing engineer with powerful tools for mechanical design. This book is designed to be a portable reference with a depth of coverage not found in "pocketbooks" of formulas and definitions and without the verbosity, high price, and excessive size of the huge encyclopedic handbooks. If an engineer needs a quick reference for a wide array of information, yet does not have a full library of textbooks or does not want to spend the extra time and effort necessary to search and carry a six pound handbook, this book is for them. * Covers all major areas of mechanical engineering with succinct coverage of the definitions, formulae, examples, theory, proofs and explanations of all principle subject areas* Boasts over 1000 pages, 550 illustrations, and 26 tables* Is comprehensive, yet affordable, compact, and durable with strong 'flexible' binding* Possesses a true handbook 'feel' in size and design with a full colour cover, thumb index, cross-references and useful printed endpapers




Statics with MATLAB®


Book Description

Engineering mechanics involves the development of mathematical models of the physical world. Statics addresses the forces acting on and in mechanical objects and systems. Statics with MATLAB® develops an understanding of the mechanical behavior of complex engineering structures and components using MATLAB® to execute numerical calculations and to facilitate analytical calculations. MATLAB® is presented and introduced as a highly convenient tool to solve problems for theory and applications in statics. Included are example problems to demonstrate the MATLAB® syntax and to also introduce specific functions dealing with statics. These explanations are reinforced through figures generated with MATLAB® and the extra material available online which includes the special functions described. This detailed introduction and application of MATLAB® to the field of statics makes Statics with MATLAB® a useful tool for instruction as well as self study, highlighting the use of symbolic MATLAB® for both theory and applications to find analytical and numerical solutions




Formulas for Dynamic Analysis


Book Description

"Explains and summarizes the fundamental derivations, basic and advanced concepts, and equations central to the field of dynamics. Chapters stand as self-study guides-containing tables, summaries of relevant equations, cross references, and illustrative examples. Utilizes Kane's equations and associated methods for the study of large and complex mu







Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.