Angular Momentum Theory Applied to Interactions in Solids


Book Description

From December 1985 through March 1986 the text of this book formed the basis of an in-hours course taught by the author at Harry Diamond Laborato ries. Considerable assistance in revising and organizing the first draft was given by John Bruno. The original draft of these notes was based on a collection of lectures delivered at the Universidade Federal de Pernambuco, Recife, Brazil, between 2 November 1981 and 2 December 1981. The visit to Recife was a response to an invi tation of Professor Gilberto F. de Sa of the Physics Department. In the preparation of these notes I made many requests of my coworkers for earlier resul ts and recollections of our early work. Among those consul ted were Donald Wortman, Nick Karayianis, and Richard Leavitt. Further, a number of .suggestions from my Brazilian colleagues helped make the lectures more clear. Particular among these were Professor Oscar Malta and Professor Alfredo A. da Gama both of whom I wish to thank for their help. Encouragement and assistance with funding for much of this work came from Leon Esterowitz of the Naval Research Laboratory and Rudolph Buser and Albert Pinto of the center for Night Vision and Electro-Optics.




Optical Interactions In Solids (2nd Edition)


Book Description

Optical Interactions in Solids presents an extensive and unified treatment of the basic principles of the optical properties of solids. It provides a theoretical background to workers in the field of laser physics and absorption and fluorescence spectroscopy of solid state materials. The book is a comprehensive coverage of the subject and is systematically and didactically organized. The level of presentation is such that it will benefit and interest both advanced students and research workers. Group theory — which is useful throughout — is introduced early in the book advocating the scientific community to overcome the reluctance to employ this powerful method. Consistent emphasis is given throughout the book to the relevance of symmetry and to detailed calculations. Different subjects as various as quantum theory of radiation field, thermal vibrations of molecules and crystals and covalent bonding are brought together in a unified treatment which requires knowledge of all these topics and this points to the interpretation of the spectral properties of solids. The content of this work could be used as a two term graduate course in solid state spectroscopy.br>







Quantum Theory of Solids


Book Description

Quantum Theory of Solids presents a concisely-structured tour of the theory relating to chemical bonding and its application to the three most significant topics in solid state physics: semiconductors, magnetism, and superconductivity--topics that have seen major advances in recent years. This is a unique treatment that develops the concepts of quantum theory for the solid state from the basics through to an advanced level, encompassing additional quantum mechanics techniques, such as the variational method and perturbation theory. Written at the senior undergraduate/masters level, it provides an exceptional grounding in the subject.







Angular Momentum Theory for Diatomic Molecules


Book Description

Angular Momentum Theory for Diatomic Molecules focuses on the application of angular momentum theory in describing the complex dynamical processes in molecules. The manuscript first offers information on tensor algebra and rotation group. Discussions focus on commutation relations, spherical and double tensors, rotations, coupling, reduced matrix elements, quaternions, combination theorem for Gegenbauer polynomials, and combination theorems for spherical harmonics. The book then takes a look at R(4) in physical systems and hydrogen molecular ion, including rigid rotator, reversed angular momentum, reduced matrix elements, spheroidal coordinates, and hydrogen atom in spheroidal coordinates. The publication examines expansions and free diatomic molecules. Topics include angular momentum, molecular frame, primitive energy spectrum, rotating oscillator and hydrogen atom, expressions for electric potentials, delta functions, and Neumann expansion. The manuscript also considers external fields and perturbations. The text is a dependable reference for readers interested in the application of angular momentum theory in identifying the dynamical processes going on in molecules.




Handbook of Applied Solid State Spectroscopy


Book Description

Solid-State spectroscopy is a burgeoning field with applications in many branches of science, including physics, chemistry, biosciences, surface science, and materials science. This handbook brings together in one volume information about various spectroscopic techniques that is currently scattered in the literature of these disciplines. This concise yet comprehensive volume covers theory and applications of a broad range of spectroscopies. It provides an overview of sixteen spectroscopic technique and self-contained chapters present up-to-date scientific and technical information and references with minimal overlap and redundancy.




Angular Momentum


Book Description

Develops angular momentum theory in a pedagogically consistent way, starting from the geometrical concept of rotational invariance. Uses modern notation and terminology in an algebraic approach to derivations. Each chapter includes examples of applications of angular momentum theory to subjects of current interest and to demonstrate the connections between various scientific fields which are provided through rotations. Includes Mathematica and C language programs.




Theoretical Foundations of Molecular Magnetism


Book Description

Magnetochemistry is a highly interdisciplinary field that attracts the interest of chemists, physicists and material scientists. Although the general strategy of theoretical molecular magnetism has been in place for decades, its performance for extended systems of interacting magnetic units can be very complicated. Professor Boca's book treats the "mosaic" of the theoretical approaches currently used in the field. This book presents a review of the theoretical concepts of molecular magnetism. The first chapter of the book recapitulates the necessary mathematical background. An overview of macroscopic magnetic properties is then presented. Formulation of magnetic parameters and methods of their calculation are given, followed by a brief summary of magnetic behaviour. The core of the book deals with the temperature dependence of magnetic susceptibility for mononuclear complexes, dimers, and exchange-coupled clusters.This book will be particularly useful for those scientists and students working in the field of molecular magnetism who need to refer to a complete and systematic treatment of the mathematics of magneto-chemical theory.




Notes on the Quantum Theory of Angular Momentum


Book Description

Informative review considers development of fundamental commutation relations for angular momentum components and vector operators. Additional topics include computation and application of matrix elements of scalar, vector, and tensor operators.