Annual Cycle Energy System Characteristics and Performance


Book Description

The Annual Cycle Energy System (ACES) provides space heating, air conditioning, and domestic water heating while using substantially less energy than competing systems providing the same services. The ACES is based on an electrically driven, unidirectional heat pump that extracts heat from an insulated tank of water during the heating season. As the heat is extracted, most of the water freezes, and the stored ice provides air conditioning in the summer. A single-family residence near Knoxville, Tennessee is being used to demonstrate the energy conserving features of the ACES. A second similar house, the control house, has been used to compare the performance of the ACES to both an electric resistance heating and hot water with central air conditioning system and an air-to-air heat pump system. The results of the first year's operation from November 1977 through mid-September 1978 showed that the ACES consumed 9012 kWh of electricity while delivering an annual coefficient of performance (COP) of 2.78. The control house consumed 20,523 kWh of electricity while delivering an annual COP of 1.13. The second annual cycle was started on December 1978. The ACES was compared with an air-to-air heat pump during this period. During the ice storage portion of this test year, December 1, 1978 to September 1, 1979, 5705 kWh of electricity was used by the ACES, compared to 12,014 kWh for the control house. The respective COPs are 1.40 for the control house with the heat pump and 2.99 for the ACES house during this period. Annual energy consumption for the test year was 6597 kWh and the annual COPs were 1.41 for the control house and 2.81 for ACES. ACES is achieving its anticipated performance. The ACES concept and its general engineering performance as compared to conventional HVAC system are described and discussed.



















Economic Evaluation of the Annual Cycle Energy System (ACES). Volume II. Detailed Results. Final Report


Book Description

The energy effectiveness and the economic viability of the ACES concept are examined. ACES is studied in a variety of different applications and compared to a number of conventional systems. The different applications are studied in two groups: the class of building into which the ACES is incorporated and the climatic region in which the ACES is located. Buildings investigated include single-family and multi-family residences and a commercial office building. The application of ACES to each of these building types is studied in Minneapolis, Atlanta, and Philadelphia. The economic evaluation of the ACES is based on a comparison of the present worth of the ACES to the present worth of conventional systems; namely, electric resistance heating, electric air conditioning, and electric domestic water heating; air-to-air heat pump and electric domestic water heating; oil-fired furnace, electric air conditioning, and electric domestic water heating; and gas-fired furnace, electric air conditioning, and gas domestic water heating.