Transmission, Distribution, and Renewable Energy Generation Power Equipment


Book Description

The revised edition presents, extends, and updates a thorough analysis of the factors that cause and accelerate the aging of conductive and insulating materials of which transmission and distribution electrical apparatus is made. New sections in the second edition summarize the issues of the aging, reliability, and safety of electrical apparatus, as well as supporting equipment in the field of generating renewable energy (solar, wind, tide, and wave power). When exposed to atmospheric corrosive gases and fluids, contaminants, high and low temperatures, vibrations, and other internal and external impacts, these systems deteriorate; eventually the ability of the apparatus to function properly is destroyed. In the modern world of "green energy", the equipment providing clean, electrical energy needs to be properly maintained in order to prevent premature failure. The book’s purpose is to help find the proper ways to slow down the aging of electrical apparatus, improve its performance, and extend the life of power generation, transmission, and distribution equipment.




Energy Meetings


Book Description

A listing of forthcoming meetings, conventions, etc.




Western Oil and Refining


Book Description




The Engineer


Book Description










Model Predictive Control of High Power Converters and Industrial Drives


Book Description

In this original book on model predictive control (MPC) for power electronics, the focus is put on high-power applications with multilevel converters operating at switching frequencies well below 1 kHz, such as medium-voltage drives and modular multi-level converters. Consisting of two main parts, the first offers a detailed review of three-phase power electronics, electrical machines, carrier-based pulse width modulation, optimized pulse patterns, state-of-the art converter control methods and the principle of MPC. The second part is an in-depth treatment of MPC methods that fully exploit the performance potential of high-power converters. These control methods combine the fast control responses of deadbeat control with the optimal steady-state performance of optimized pulse patterns by resolving the antagonism between the two. MPC is expected to evolve into the control method of choice for power electronic systems operating at low pulse numbers with multiple coupled variables and tight operating constraints it. Model Predictive Control of High Power Converters and Industrial Drives will enable to reader to learn how to increase the power capability of the converter, lower the current distortions, reduce the filter size, achieve very fast transient responses and ensure the reliable operation within safe operating area constraints. Targeted at power electronic practitioners working on control-related aspects as well as control engineers, the material is intuitively accessible, and the mathematical formulations are augmented by illustrations, simple examples and a book companion website featuring animations. Readers benefit from a concise and comprehensive treatment of MPC for industrial power electronics, enabling them to understand, implement and advance the field of high-performance MPC schemes.







Journal of the Society of Chemical Industry


Book Description

Includes list of members, 1882-1902 and proceedings of the annual meetings and various supplements.