Annual Plant Reviews, Plant Mitochondria


Book Description

This long-awaited second edition covers the major changes that have occurred in the field over the last decade Completely revised with the most up-to-date research and including brand new chapters, Annual Plant Reviews, Volume 50: Plant Mitochondria, 2nd Edition presents the multifaceted roles of mitochondria in plants. The book starts with a short history of plant mitochondrial research; discusses how coevolution shaped plant mitochondrial gene expression; explains control of number, shape, size, and motility of mitochondria; delves into stress responses and roles in stress alleviation in mitochondrial biochemistry; covers the damage repair pathway of the Calvin-Benson cycle; and more. Containing sections written by many of the world’s leading researchers in this area, this book brings together and reviews for the first time many recent advances. It offers chapters on: Bioblasts, Cytomikrosomen & Chondriosomes; The Crosstalk Between Genomes; The Dynamic Chondriome; Metal Homeostasis in Plant Mitochondria; RNA Metabolism and Transcript Regulation; Mitochondrial Regulation and Signalling in the Photosynthetic Cell; Mitochondrial Biochemistry; Ecophysiology of Plant Respiration; Photorespiration; and Mitochondria and Cell Death. Annual Plant Reviews, Volume 50: Plant Mitochondria, 2nd Edition is an extremely important and timely book that will be of great use and interest to plant scientists, cell and molecular biologists, and biochemists.




Annual Plant Reviews, Plant Proteomics


Book Description

The proteome comprises all protein species resulting from geneexpression in a cell, organelle, tissue or organism. By definition,proteomics aims to identify and characterise the expressionpattern, cellular location, activity, regulation,post-translational modifications, molecular interactions, threedimensional structures and functions of each protein in abiological system. In plant science, the number of proteome studies is rapidlyexpanding after the completion of the Arabidopsis thaliana genomesequence, and proteome analyses of other important or emergingmodel systems and crop plants are in progress or are beinginitiated. Proteome analysis in plants is subject to the sameobstacles and limitations as in other organisms, but the nature ofplant tissues, with their rigid cell walls and complex variety ofsecondary metabolites, means that extra challenges are involvedthat may not be faced when analysing other organisms. This volume aims to highlight the ways in which proteome analysishas been used to probe the complexities of plant biochemistry andphysiology. It is aimed at researchers in plant biochemistry,genomics, transcriptomics and metabolomics who wish to gain anup-to-date insight into plant proteomes, the information plantproteomics can yield and the directions plant proteome research istaking.




Annual Plant Reviews, Control of Primary Metabolism in Plants


Book Description

The ability to control the rates of metabolic processes in response to changes in the internal or external environment is an indispensable attribute of living cells that must have arisen with life’s origin. This adaptability is necessary for conserving the stability of the intracellular environment which is, in turn, essential for maintaining an efficient functional state. The advent of genomics, proteomics, and metabolomics has revolutionised the study of plant development and is now having a significant impact on the study of plant metabolism and its control. In the last few years, significant advances have been made, with the elucidation of enzyme gene families and the identification of new proteinaceous and allosteric regulators. The first part of this volume is devoted to generic aspects of metabolic control, with chapters on the key control points in pathways. Part Two considers the control of specific pathways, with detailed descriptions (including structures) and discussions of the regulation of these pathways, particularly in terms of the enzymology. The book is directed at researchers and professionals in plant biochemistry, physiology, molecular biology and cell biology.




Plant Mitochondria


Book Description

This detailed volume presents a wide range of techniques for plant mitochondrial analysis, ranging from tried-and-tested work horse techniques to the latest innovations. Within its pages, it explores subjects such as affinity-based isolation of mitochondria with magnetic beads, mitochondrial quality assessment protocols, measurement of uptake and release of specific metabolites, mitochondrial protein identification and visualization, as well as gene splicing and editing, and much more. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Mitochondria: Methods and Protocols provides a highly useful set of methodologies for the plant mitochondrial community to help discover more interesting aspects of plant mitochondria in the years to come.




Annual Plant Reviews, The Moss Physcomitrella patens


Book Description

Commencing with a chapter which places Physcomitrella into phylogenetic position, this important publication then covers the following major topics. Population genetics, genome, transcripts and metabolomics, gene targeting, hormones, small RNAs, tip growth, chloroplasts, sporophyte development, desiccation and oxidative stress, sugar metabolism, and pathogenesis. With chapters contributed by many of the World's leading workers in the area, this landmark book is essential reading for all those studying plant evolutionary biology, genomics, molecular and cell biology and genetics.




Annual Plant Reviews, The Plant Cytoskeleton in Cell Differentiation and Development


Book Description

Annual Plant Reviews, Volume 10 The cytoskeleton is a dynamic filamentous structure composed of at least actin and microtubule networks. Actin and microtubules are no different structurally from their animal and fungal counterparts. However, the strategies of cell differentiation and development in plants require this network to respond appropriately to plant-specific developmental cues and to environmental factors. This book views the cytoskeleton from different perspectives but, on the whole, as a network composed of structural and regulatory proteins controlled by internal and external stimuli that result in different aspects of cell differentiation. This is a volume for researchers and professionals in plant biochemistry, cell biology and genetics.




Plant Cells and their Organelles


Book Description

Plant Cells and Their Organelles provides a comprehensive overview of the structure and function of plant organelles. The text focuses on subcellular organelles while also providing relevant background on plant cells, tissues and organs. Coverage of the latest methods of light and electron microscopy and modern biochemical procedures for the isolation and identification of organelles help to provide a thorough and up-to-date companion text to the field of plant cell and subcellular biology. The book is designed as an advanced text for upper-level undergraduate and graduate students with student-friendly diagrams and clear explanations.




Plant Mitochondria


Book Description

Mitochondria are the product of a long evolutionary history. It is now a well established fact that mitochondria did evolve from free living bacteria being the common ancestor of both, eukaryotic mitochondria and α-proteobacteria. Advances in genome sequencing, the establishment of in organello and in vitro assays to name only a few, contributed significantly to advances in plant mitochondrial research. Second generation sequencing and the ability to directly sequence and analyse the whole plant transcriptome certainly will help to develop the research on plant mitochondria to another level in the future. In this book the current knowledge about plant mitochondria is presented in a series of detailed chapters, which have been organized in five main sections: (i) dynamics, genes and genomes; (ii) transcription and RNA processing; (iii) translation and import; (iv) biochemistry, regulation and function; and (v) mitochondrial dysfunction and repair. These sections consist of two to five chapters, each written by well-known specialists in the field. This book thus provides a comprehensive inside in the field of plant mitochondria for the specialist. The addition of a glossary and text boxes to each chapter provides easy access for readers from other subjects and hopefully will attract young scientist to the fascinating and exiting field of plant mitochondria.




Alternative Respiratory Pathways in Higher Plants


Book Description

Rapid developments in molecular and systems biology techniques have allowed researchers to unravel many new mechanisms through which plant cells switch over to alternative respiratory pathways. This book is a unique compendium of how and why higher plants evolved alternative respiratory metabolism. It offers a comprehensive review of current research in the biochemistry, physiology, classification and regulation of plant alternative respiratory pathways, from alternative oxidase diversity to functional marker development. The resource provides a broad range of perspectives on the applications of plant respiratory physiology, and suggests brand new areas of research. Other key features: written by an international team of reputed plant physiologists, known for their pioneering contributions to the knowledge of regular and alternative respiratory metabolism in higher plants includes step-by-step protocols for key molecular and imaging techniques advises on regulatory options for managing crop yields, food quality and environment for crop improvement and enhanced food security covers special pathways which are of key relevance in agriculture, particularly in plant post-harvest commodities Primarily for plant physiologists and plant biologists, this authoritative compendium will also be of great value to postdoctoral researchers working on plant respiration, as well as to graduate and postgraduate students and university staff in Plant Science. It is a useful resource for corporate and private firms involved in developing functional markers for breeding programs and controlling respiration for the prevention of post-harvest losses in fruit, vegetables, cut flowers and tubers.




Biogenesis of the oxidative phosphorylation machinery in plants. From gene expression to complex assembly


Book Description

Mitochondrial biogenesis is an extremely complex process. A hint of this complexity is clearly indicated by the many steps and factors required to assemble the respiratory complexes involved in oxidative phosphorylation. These steps include the expression of genes present in both the nucleus and the organelle, intricate post-transcriptional RNA processing events, the coordinated synthesis, transport and assembly of the different subunits, the synthesis and assembly of co-factors and, finally, the formation of supercomplexes or respirasomes. It can be envisaged, and current knowledge supports this view, that plants have evolved specific mechanisms for the biogenesis of respiratory complexes. For example, expression of the mitochondrial genome in plants has special features, not present in other groups of eukaryotes. Moreover, plant mitochondrial biogenesis and function should be considered in the context of the presence of the chloroplast, a second organelle involved in energetic and redox metabolism. It implies the necessity to discriminate between proteins destined for each organelle and requires the establishment of functional interconnections between photosynthesis and respiration. In recent years, our knowledge of the mechanisms involved in these different processes in plants has considerably increased. As a result, the many events and factors necessary for the correct expression of proteins encoded in the mitochondrial genome, the cis acting elements and factors responsible for the expression of nuclear genes encoding respiratory chain components, the signals and mechanisms involved in the import of proteins synthesized in the cytosol and the many factors required for the synthesis and assembly of the different redox co-factors (heme groups, iron-sulfur clusters, copper centers) are beginning to be recognized at the molecular level. However, detailed knowledge of these processes is still not complete and, especially, little is known about how these processes are interconnected. Questions such as how the proteins, once synthesized in the mitochondrial matrix, are inserted into the membrane and assembled with other components, including those imported from the cytosol, how the expression of both genomes is coordinated and responds to changes in mitochondrial function, cellular requirements or environmental cues, or which factors and conditions influence the assembly of complexes and supercomplexes are still open and will receive much attention in the near future. This Research Topic is aimed at establishing a collection of articles that focus on the different processes involved in the biogenesis of respiratory complexes in plants as a means to highlight recent advances. In this way, it intends to help to construct a picture of the whole process and, not less important, to expose the existing gaps that need to be addressed to fully understand how plant cells build and modulate the complex structures involved in respiration.