Answer Set Solving in Practice


Book Description

Answer Set Programming (ASP) is a declarative problem solving approach, initially tailored to modelling problems in the area of Knowledge Representation and Reasoning (KRR). This book presents a practical introduction to ASP. It introduces ASP's solving technology, modelling language and methodology, while illustrating the overall solving process with practical examples.




Answer Set Programming


Book Description

Answer set programming (ASP) is a programming methodology oriented towards combinatorial search problems. In such a problem, the goal is to find a solution among a large but finite number of possibilities. The idea of ASP came from research on artificial intelligence and computational logic. ASP is a form of declarative programming: an ASP program describes what is counted as a solution to the problem, but does not specify an algorithm for solving it. Search is performed by sophisticated software systems called answer set solvers. Combinatorial search problems often arise in science and technology, and ASP has found applications in diverse areas—in historical linguistic, in bioinformatics, in robotics, in space exploration, in oil and gas industry, and many others. The importance of this programming method was recognized by the Association for the Advancement of Artificial Intelligence in 2016, when AI Magazine published a special issue on answer set programming. The book introduces the reader to the theory and practice of ASP. It describes the input language of the answer set solver CLINGO, which was designed at the University of Potsdam in Germany and is used today by ASP programmers in many countries. It includes numerous examples of ASP programs and present the mathematical theory that ASP is based on. There are many exercises with complete solutions.




Answer Set Solving in Practice


Book Description

Answer Set Programming (ASP) is a declarative problem solving approach, initially tailored to modeling problems in the area of Knowledge Representation and Reasoning (KRR). More recently, its attractive combination of a rich yet simple modeling language with high-performance solving capacities has sparked interest in many other areas even beyond KRR. This book presents a practical introduction to ASP, aiming at using ASP languages and systems for solving application problems. Starting from the essential formal foundations, it introduces ASP's solving technology, modeling language and methodology, while illustrating the overall solving process by practical examples. Table of Contents: List of Figures / List of Tables / Motivation / Introduction / Basic modeling / Grounding / Characterizations / Solving / Systems / Advanced modeling / Conclusions




Knowledge Representation, Reasoning, and the Design of Intelligent Agents


Book Description

Knowledge representation and reasoning is the foundation of artificial intelligence, declarative programming, and the design of knowledge-intensive software systems capable of performing intelligent tasks. Using logical and probabilistic formalisms based on answer set programming (ASP) and action languages, this book shows how knowledge-intensive systems can be given knowledge about the world and how it can be used to solve non-trivial computational problems. The authors maintain a balance between mathematical analysis and practical design of intelligent agents. All the concepts, such as answering queries, planning, diagnostics, and probabilistic reasoning, are illustrated by programs of ASP. The text can be used for AI-related undergraduate and graduate classes and by researchers who would like to learn more about ASP and knowledge representation.




Mathematics for Machine Learning


Book Description

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.




Constraint Solving and Planning with Picat


Book Description

This book introduces a new logic-based multi-paradigm programming language that integrates logic programming, functional programming, dynamic programming with tabling, and scripting, for use in solving combinatorial search problems, including CP, SAT, and MIP (mixed integer programming) based solver modules, and a module for planning that is implemented using tabling. The book is useful for undergraduate and graduate students, researchers, and practitioners.




Beast Academy Guide 2A


Book Description

Beast Academy Guide 2A and its companion Practice 2A (sold separately) are the first part in the planned four-part series for 2nd grade mathematics. Book 2A includes chapters on place value, comparing, and addition.




Model Rules of Professional Conduct


Book Description

The Model Rules of Professional Conduct provides an up-to-date resource for information on legal ethics. Federal, state and local courts in all jurisdictions look to the Rules for guidance in solving lawyer malpractice cases, disciplinary actions, disqualification issues, sanctions questions and much more. In this volume, black-letter Rules of Professional Conduct are followed by numbered Comments that explain each Rule's purpose and provide suggestions for its practical application. The Rules will help you identify proper conduct in a variety of given situations, review those instances where discretionary action is possible, and define the nature of the relationship between you and your clients, colleagues and the courts.




Think Like a Programmer


Book Description

The real challenge of programming isn't learning a language's syntax—it's learning to creatively solve problems so you can build something great. In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to: –Split problems into discrete components to make them easier to solve –Make the most of code reuse with functions, classes, and libraries –Pick the perfect data structure for a particular job –Master more advanced programming tools like recursion and dynamic memory –Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.




Reasoning Web. Declarative Artificial Intelligence


Book Description

This volume contains 8 lecture notes of the 16th Reasoning Web Summer School (RW 2020), held in Oslo, Norway, in June 2020. The Reasoning Web series of annual summer schools has become the prime educational event in the field of reasoning techniques on the Web, attracting both young and established researchers. The broad theme of this year's summer school was “Declarative Artificial Intelligence” and it covered various aspects of ontological reasoning and related issues that are of particular interest to Semantic Web and Linked Data applications. The following eight lectures have been presented during the school: Introduction to Probabilistic Ontologies, On the Complexity of Learning Description Logic Ontologies, Explanation via Machine Arguing, Stream Reasoning: From Theory to Practice, First-Order Rewritability of Temporal Ontology-Mediated Queries, An Introduction to Answer Set Programming and Some of Its Extensions, Declarative Data Analysis using Limit Datalog Programs, and Knowledge Graphs: Research Directions.