Antiviral Strategies


Book Description

A crucial issue for antiviral therapy is the fact that all antiviral substances rapidly select for resistance; thus, monitoring and overcoming resistance has become a most important clinical paradigm of antiviral therapy. This calls for cautious use of antiviral drugs and implementation of combination therapies. In parallel, efforts in drug discovery have to be continued to develop compounds with novel mode-of-action and activity against resistant strains. This book reviews the current status of antiviral therapy, from the roads to development of new compounds to their clinical use and cost effectiveness. Individual chapters address in more detail all available drug classes and outline new approaches currently under development.




Antiviral Drug Discovery and Development


Book Description

This book summarizes state-of-the-art antiviral drug design and discovery approaches starting from natural products to de novo design, and provides a timely update on recently approved antiviral drugs and compounds in advanced clinical development. Special attention is paid to viral infections with a high impact on the world population or highly relevant from the public health perspective (HIV, hepatitis C, influenza virus, etc.). In these chapters, limitations associated with adverse effects and emergence of drug resistance are discussed in detail. In addition to classical antiviral strategies, chapters will be dedicated to discuss the non-classical drug development strategies to block viral infection, for instance, allosteric inhibitors, covalent antiviral agents, or antiviral compounds targeting protein–protein interactions. Finally, current prospects for producing broad-spectrum antiviral inhibitors will be also addressed. The book is distinctive in providing the most recent update in the rapidly evolving field of antiviral therapeutics. Authoritative reviews are written by international scientists well known for their contributions in their topics of research, which makes this book suitable for researchers not only within the antiviral research community but also attractive to a broad audience in the drug discovery field. This book covers molecular structures and biochemical mechanisms mediating the antiviral effects, while discussing various ligand design strategies, which include traditional medicinal chemistry, computational chemistry, and chemical biology approaches. The book provides a comprehensive review of antiviral drug discovery and development approaches, particularly focusing on current innovations and future trends.




Human Herpesviruses


Book Description

This definitive and comprehensive account of the human herpes viruses provides an encyclopedic overview of their basic virology and clinical manifestations. This group of viruses includes human simplex type 1 and 2, Epstein Barr virus, cytomegalovirus and varicella-zoster virus. The diseases they cause are significant and often recurrent. Their prevalence in the developed world accounts for a major burden of disease, and as a result there is a great deal of research into the pathophysiology if infection and immunobiology. Another important area covered within this volume concerns antiviral therapy and the development of vaccines. All these aspects are covered in depth and the volume is fully up to date both scientifically and in terms of clinical guidelines for patient care. The text is generously illustrated throughout and fully referenced to the latest research and developments.




Advances in Antiviral Drug Design


Book Description

Regularly reviewing the "state-of-the-art" developments in the antiviral drug research field, this latest volume spans the conceptual design and chemical synthesis of new antiviral compounds. It discusses their structure-activity relationship, mechanism and targets of action, pharmacological behavior, antiviral activity spectrum, and therapeutic potential for clinical use.




Antiviral Drugs


Book Description

This book focuses on new small molecule approaches to combat viral infections. The chapters describe the discovery and development from bench through the clinic of relatively recently-approved antiviral drugs and compounds in advanced clinical development. Organized by a virus (such as HIV, HCV, RSV, influenza, HBV and CMV) and written by top academic and industrial authorities in the field, the book provides a unique opportunity to study, understand and apply discovery and development principles and learning without the need for an individual to research, analyze and synthesize all immense sourcing references. Topics showcase challenges and solutions of issues encountered, offering tremendous experience accumulated over many years of research that will be particularly useful to basic and bench scientists as well as clinicians as they continue discovering and developing new drugs and therapies.




Antiviral Drug Strategies


Book Description

By focusing on general molecular mechanisms of antiviral drugs rather than therapies for individual viruses, this ready reference provides the critical knowledge needed to develop entirely novel therapeutics and to target new viruses. It begins with a general discussion of antiviral strategies, followed by a broad survey of known viral targets, such as reverse transcriptases, proteases, neuraminidases, RNA polymerases, helicases and primases, as well as their known inhibitors. The final section contains several cases studies of recent successful antiviral drug development. Edited by Erik de Clercq, the world authority on small molecule antiviral drugs, who has developed more new antivirals than anyone else.




Viral Pathogenesis


Book Description

Viral Pathogenesis: From Basics to Systems Biology, Third Edition, has been thoroughly updated to cover topical advances in the evolving field of viral pathogenesis, while also providing the requisite classic foundational information for which it is recognized. The book provides key coverage of the newfound ability to profile molecular events on a system-wide scale, which has led to a deeper understanding of virus-host interactions, host signaling and molecular-interaction networks, and the role of host genetics in determining disease outcome. In addition, the content has been augmented with short chapters on seminal breakthroughs and profiles of their progenitors, as well as short commentaries on important or controversial issues in the field. Thus, the reader will be given a view of virology research with perspectives on issues such as biomedical ethics, public health policy, and human health. In summary, the third edition will give the student a sense of the exciting new perspectives on viral pathogenesis that have been provided by recent developments in genomics, computation, modeling, and systems biology. - Covers all aspects of viral infection, including viral entry, replication, and release, as well as innate and adaptive immunity and viral pathogenesis - Provides a fresh perspective on the approaches used to understand how viruses cause disease - Features molecular profiling techniques, whole genome sequencing, and innovative computational methods - Highlights the use of contemporary approaches and the insights they provide to the field




Virus as Populations


Book Description

Virus as Composition, Complexity, Quasispecies, Dynamics, and Biological Implications, Second Edition, explains the fundamental concepts surrounding viruses as complex populations during replication in infected hosts. Fundamental phenomena in virus behavior, such as adaptation to changing environments, capacity to produce disease, and the probability to be transmitted or respond to treatment all depend on virus population numbers. Concepts such as quasispecies dynamics, mutations rates, viral fitness, the effect of bottleneck events, population numbers in virus transmission and disease emergence, and new antiviral strategies are included. The book's main concepts are framed by recent observations on general virus diversity derived from metagenomic studies and current views on the origin and role of viruses in the evolution of the biosphere. - Features current views on key steps in the origin of life and origins of viruses - Includes examples relating ancestral features of viruses with their current adaptive capacity - Explains complex phenomena in an organized and coherent fashion that is easy to comprehend and enjoyable to read - Considers quasispecies as a framework to understand virus adaptability and disease processes




Antiviral Drug Resistance


Book Description

The study of antiviral drug resistance has provided important insights into the structure of virus enzymes, the functions of certain genes, mechanisms of action of antiviral drugs, the design of new antiviral compounds and the pathogenesis of viral diseases. The emergence of resistant strains must be explored at all stages of drug development: during the preclinical evaluation of candidate compounds; during the early clinical evaluation of new drugs; and as part of epidemiological surveillance for the prevalence of resistance during use of approved treatments. Accumulating understanding of antiviral drug resistance thus reflects progress in the chemotherapy of viral infection. Antiviral Drug Resistance provides state-of-the-art coverage of the basic and clinical aspects of this subject. It deals with the basic science, including the mechanisms of drug resistance and drug action, genetics of drug resistance, cross resistance, and X-ray crystallographic structural aspects of resistance, as well as the clinical aspects, including issues of assay of susceptibility of clinical isolates, descriptive aspects of emergence of reduced susceptibility, and clinical significance and impact of resistance. As such this unique volume will be essential to basic researchers in drug discovery and viral pathogenesis, as well as clinicians involved in antiviral chemotherapy.




Clinical Use of Antiviral Drugs


Book Description

Antiviral chemotherapy has come of age, and, after an initial slow pro gress, the development of new antiviral agents has proceeded at a more rapid pace and the perspectives for their clinical use have increased considerably. Now, 25 years after the first antiviral assay (idoxuridine) was introduced in the clinic, it is fitting to commemorate the beginning of the antivirals' era. In its introductory chapter B.E. Juel-Jensen touches on what may be con sidered as five of the most fundamental requirements of an antiviral drug : efficacy, relative non-toxicity, easy solubility, ready availability and rea sonable cost. Surely, the antiviral drugs that have so far been used in the clinic could still be improved upon as one or more of these five essential demands are concerned. How is all began is narrated by W.H. Prusoff. The first antiviral drugs to be used in humans were methisazone and idoxuridine, the former, which is now of archival interest, in the prevention of smallpox, the latter, which was approved for clinical use in the United States in 1962, for the topical treatment of herpetic keratitis. In terms of potency, also because of solubility reasons, idoxuridine has been superseded by trifluridine in the topical treatment of herpes simplex epithelial keratitis. H.E. Kaufman did not find trifluridine or acyclovir ef fective in the treatment of deep stromal keratitis or iritis and he reckons that other antiviral drugs (i.e. bromovinyldeoxyuridine) would not be effec tive either.