Apoptosis and Beyond


Book Description

These volumes teach readers to think beyond apoptosis and describes all of the known processes that cells can undergo which result in cell death This two-volume source on how cells dies is the first, comprehensive collection to cover all of the known processes that cells undergo when they die. It is also the only one of its kind to compare these processes. It seeks to enlighten those in the field about these many processes and to stimulate their thinking at looking at these pathways when their research system does not show signs of activation of the classic apoptotic pathway. In addition, it links activities like the molecular biology of one process (eg. Necrosis) to another process (eg. apoptosis) and contrasts those that are close to each. Volume 1 of Apoptosis and Beyond: The Many Ways Cells Die begins with a general view of the cytoplasmic and nuclear features of apoptosis. It then goes on to offer chapters on targeting the cell death mechanism; microbial programmed cell death; autophagy; cell injury, adaptation, and necrosis; necroptosis; ferroptosis; anoikis; pyronecrosis; and more. Volume 2 covers such subjects as phenoptosis; pyroptosis; hematopoiesis and eryptosis; cyclophilin d-dependent necrosis; and the role of phospholipase in cell death. Covers all known processes that dying cells undergo Provides extensive coverage of a topic not fully covered before Offers chapters written by top researchers in the field Provides activities that link and contrast processes to each other Apoptosis and Beyond: The Many Ways Cells Die will appeal to students and researchers/clinicians in cell biology, molecular biology, oncology, and tumor biology.







Cell Death


Book Description

A million cells in our bodies die every second--they commit suicide by activating a process called apoptosis or other forms of programmed cell death. These mechanisms are essential for survival of the body as a whole and play critical roles in various developmental processes, the immune system, and cancer. In this second edition of Douglas Green's essential book on cell death, Green retains the bottom-up approach of the first edition, starting with the enzymes that carry out the execution (caspases) and their cellular targets before examining the machinery that connects them to signals that cause cell death. He also describes the roles of cell death in development, neuronal selection, and the development of self-tolerance in the immune system, as well as how the body uses cell death to defend against cancer. The new edition is fully updated to cover the many recent advances in our understanding of the death machinery and signals that control cell death. These include the mechanisms regulating necroptosis, mitophagy, and newly identified processes, such as ferroptosis. The book will thus be of great interest to researchers actively working in the field, as well as biologists and undergraduates encountering the topic for the first time.




Apoptosis and Beyond, 2 Volume Set


Book Description

These volumes teach readers to think beyond apoptosis and describes all of the known processes that cells can undergo which result in cell death This two-volume source on how cells dies is the first, comprehensive collection to cover all of the known processes that cells undergo when they die. It is also the only one of its kind to compare these processes. It seeks to enlighten those in the field about these many processes and to stimulate their thinking at looking at these pathways when their research system does not show signs of activation of the classic apoptotic pathway. In addition, it links activities like the molecular biology of one process (eg. Necrosis) to another process (eg. apoptosis) and contrasts those that are close to each. Volume 1 of Apoptosis and Beyond: The Many Ways Cells Die begins with a general view of the cytoplasmic and nuclear features of apoptosis. It then goes on to offer chapters on targeting the cell death mechanism; microbial programmed cell death; autophagy; cell injury, adaptation, and necrosis; necroptosis; ferroptosis; anoikis; pyronecrosis; and more. Volume 2 covers such subjects as phenoptosis; pyroptosis; hematopoiesis and eryptosis; cyclophilin d-dependent necrosis; and the role of phospholipase in cell death. Covers all known processes that dying cells undergo Provides extensive coverage of a topic not fully covered before Offers chapters written by top researchers in the field Provides activities that link and contrast processes to each other Apoptosis and Beyond: The Many Ways Cells Die will appeal to students and researchers/clinicians in cell biology, molecular biology, oncology, and tumor biology.




Magnesium in the Central Nervous System


Book Description

The brain is the most complex organ in our body. Indeed, it is perhaps the most complex structure we have ever encountered in nature. Both structurally and functionally, there are many peculiarities that differentiate the brain from all other organs. The brain is our connection to the world around us and by governing nervous system and higher function, any disturbance induces severe neurological and psychiatric disorders that can have a devastating effect on quality of life. Our understanding of the physiology and biochemistry of the brain has improved dramatically in the last two decades. In particular, the critical role of cations, including magnesium, has become evident, even if incompletely understood at a mechanistic level. The exact role and regulation of magnesium, in particular, remains elusive, largely because intracellular levels are so difficult to routinely quantify. Nonetheless, the importance of magnesium to normal central nervous system activity is self-evident given the complicated homeostatic mechanisms that maintain the concentration of this cation within strict limits essential for normal physiology and metabolism. There is also considerable accumulating evidence to suggest alterations to some brain functions in both normal and pathological conditions may be linked to alterations in local magnesium concentration. This book, containing chapters written by some of the foremost experts in the field of magnesium research, brings together the latest in experimental and clinical magnesium research as it relates to the central nervous system. It offers a complete and updated view of magnesiums involvement in central nervous system function and in so doing, brings together two main pillars of contemporary neuroscience research, namely providing an explanation for the molecular mechanisms involved in brain function, and emphasizing the connections between the molecular changes and behavior. It is the untiring efforts of those magnesium researchers who have dedicated their lives to unraveling the mysteries of magnesiums role in biological systems that has inspired the collation of this volume of work.




Self and Nonself


Book Description

In 1960 Sir Frank Macfarlane Burnet received the Noble Prize in Physiology and Medicine. He titled his Nobel Lecture “Immunological Recognition of Self” emphasizing the central argument of immunological tolerance in “How does the vertebrate organism recognize self from nonself in this the immunological sense—and how did the capacity evolve.” The concept of self is linked to the concept of biological self identity. All organisms, from bacteria to higher animals, possess recognition systems to defend themselves from nonself. Even in the context of the limited number of metazoan phyla that have been studied in detail, we can now describe many of the alternative mechanism of immune recognition that have emerged at varying points in phylogeny. Two different arms—the innate and adaptive immune system—have emerged at different moments in evolution, and they are conceptually different. The ultimate goals of immune biology include reconstructing the molecular networks underlying immune processes.




Apoptosis


Book Description

Apoptosis, or cell death, can be pathological, a sign of disease and damage, or physiological, a process essential for normal health. This book, with contributions from experts in the field, provides a timely compilation of reviews of mechanisms of apoptosis. The book is organized into three convenient sections. The first section explores the different processes of cell death and how they relate to one another. The second section focuses on organ-specific apoptosis-related diseases. The third section explores cell death in non-mammalian organisms, such as plants. This comprehensive text is a must-read for all researchers and scholars interested in apoptosis.




When Cells Die II


Book Description

Offers the most thorough, cutting-edge coverage of the field of cell death since publication of the first edition. Leading international researchers present an up-to-date yet accessible survey ranging from the history of cell death science to its modern methodology. Extensively revised, this new edition features relavant discussions of: the impact of genomics and proteomics; gene therapy and pharmacogenetics; the role of mitochondria; caspase-independent and non-apoptotic cell death; and evolution of mechanisms.




Translational Research in Traumatic Brain Injury


Book Description

Traumatic brain injury (TBI) remains a significant source of death and permanent disability, contributing to nearly one-third of all injury related deaths in the United States and exacting a profound personal and economic toll. Despite the increased resources that have recently been brought to bear to improve our understanding of TBI, the developme




Mechanisms of Cell Death


Book Description

Contains papers from a July 1998 conference held at the Queens College Campus of the City University of New York. Papers are arranged in sections on mechanisms and general considerations, programmed (developmental) cell death, and cell death and pathological and clinical situations. Specific topics