Apoptosis and Cancer


Book Description




Apoptosis and Cancer Chemotherapy


Book Description

The past few years have witnessed an astonishing international effort that established the role of some 20 new molecules in apoptosis and added activation or suppression of apoptosis to the accepted biological functions of a great many others already familiar in cancer biology. Some of these molecules are receptors, transducing cytokine-mediated signals; others appear to intensify or diminish the risk that a compro mised cell will fire its apoptosis effector mechanism. All are of interest as potential targets for tumor therapy, and some may prove to be control points influenced in the pathogenesis of cancer and other diseases as diverse as viral infection, neurodegenerative disorders, and stroke. Sometimes, in the midst of these developments, a kind of euphoria ap pears to have gripped the research community, with the expectation that apoptosis will afford explanations to many unsolved questions in cellu lar regulation. This book, in a series of thoughtful and provocative ar ticles--some from established leaders in the field, and others from younger scientists--seeks to redress the balance.




Apoptosis in Normal Development and Cancer


Book Description

In apoptosis in the mammalian system, cells have a finite life - they develop, are used and then die. Cancer cells escape this programmed routine but, from an understanding of apoptosis, they can be programmed to die. This book addresses the







Innovative Medicine


Book Description

This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.




Necrotic Cell Death


Book Description

Starting with discussion of basic concepts and the molecular mechanisms of necrosis, this book looks first at several forms of necrotic cell death that have been identified, including necroptosis, autophagic cell death, and PARP-mediated cell death. As necrotic cell death is increasingly known to play a critical role in many physiological processes, the next chapters discuss its effect on metabolism, inflammation, immunity, and development. Necrotic cell death is closely implicated in human diseases like cancer, so the next chapters examine its relevance to human diseases, and final chapters cover methodologies for measuring necrosis. This book presents comprehensive coverage of necrosis from recognized experts from leading academic and medical institutions around the world. ​In contrast to apoptosis, well-defined as a form of programmed cell death, necrosis used to be considered as accidental (i.e., non-programmed) cell death, usually in response to a severe injury. Accumulating evidence now suggests, however, that necrosis is also programmed and controlled by distinctive "death machinery" in response to various stimuli like oxidative stress or DNA damage.




The Cheating Cell


Book Description

A fundamental and groundbreaking reassessment of how we view and manage cancer When we think of the forces driving cancer, we don’t necessarily think of evolution. But evolution and cancer are closely linked because the historical processes that created life also created cancer. The Cheating Cell delves into this extraordinary relationship, and shows that by understanding cancer’s evolutionary origins, researchers can come up with more effective, revolutionary treatments. Athena Aktipis goes back billions of years to explore when unicellular forms became multicellular organisms. Within these bodies of cooperating cells, cheating ones arose, overusing resources and replicating out of control, giving rise to cancer. Aktipis illustrates how evolution has paved the way for cancer’s ubiquity, and why it will exist as long as multicellular life does. Even so, she argues, this doesn’t mean we should give up on treating cancer—in fact, evolutionary approaches offer new and promising options for the disease’s prevention and treatments that aim at long-term management rather than simple eradication. Looking across species—from sponges and cacti to dogs and elephants—we are discovering new mechanisms of tumor suppression and the many ways that multicellular life-forms have evolved to keep cancer under control. By accepting that cancer is a part of our biological past, present, and future—and that we cannot win a war against evolution—treatments can become smarter, more strategic, and more humane. Unifying the latest research from biology, ecology, medicine, and social science, The Cheating Cell challenges us to rethink cancer’s fundamental nature and our relationship to it.




Nanoparticle Drug Delivery Systems for Cancer Treatment


Book Description

In recent years, nanoparticles—bionanomaterials with specific physicochemical properties—have gained a great deal of scientific interest owing to their unique structure. Nanoparticle-based drugs are now widely regarded as a safer, more precise, and more effective mode of cancer therapy, considering their ability to enhance drug bioavailability, improve site-specific drug delivery, and protect nontarget tissues from toxic therapeutic drugs. This book compiles and details cutting-edge research in nanomedicine from an interdisciplinary team of international cancer researchers who are currently revolutionizing drug delivery techniques through the development of nanomedicines and nanotheranostics. Edited by Hala Gali-Muhtasib and Racha Chouaib, two prominent cancer researchers, this book will appeal to anyone involved in nanotechnology, cancer therapy, or drug delivery research.




Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy


Book Description

Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy, Second Edition, provides a comprehensive overview of the molecular methodologies in the neuro-oncology field. There have been profound changes in the landscape of approaches to brain tumor therapy since the first edition—mainly in the areas of molecular biology and molecular therapeutics, as well as in the maturation of immunotherapy approaches (e.g., vaccines). This updated edition has a new, primary focus on multidisciplinary molecular methods, and is broadened to include the latest cutting-edge molecular biology, therapeutics, immunobiology and immunotherapy approaches. As the first comprehensive book to address the molecular research into these concepts, users will find it to be an invaluable resource on the topics discussed. - Provides the most up-to-date information regarding conventional forms of cytotoxic chemotherapy, as well as the basic science and clinical application of molecular therapeutics for the treatment of brain tumors - Broadly appeals to anyone interested in neuro-oncology and the treatment of brain tumors - Features updated chapters on molecular biology, molecular therapeutics, maturation of immunotherapy approaches, and a focus on multidisciplinary molecular methods - Includes a new section on the basic science of immunology, as well as thorough updates on the use of vaccine technology and immunotherapy for the treatment of brain tumors




Multi-Drug Resistance in Cancer


Book Description

Chemotherapy is one of the major treatment options for cancer patients; however, the efficacy of chemotherapeutic management of cancer is severely limited by multidrug resistance, in that cancer cells become simultaneously resistant to many structurally and mechanistically unrelated drugs. In the past three decades, a number of mechanisms by which cancer cells acquire multidrug resistance have been discovered. In addition, the development of agents or strategies to overcome resistance has been the subject of intense study. This book contains comprehensive and up-to-date reviews of multidrug resistance mechanisms, from over-expression of ATP-binding cassette drug transporters such as P-glycoprotein, multidrug resistance-associated proteins, and breast cancer resistance p- tein to the drug ratio-dependent antagonism and the paradigm of cancer stem cells. The book also includes strategies to overcome multidrug resistance, from the development of compounds that inhibit drug transporter function to the modulation of transporter expression. In addition, this book contains techniques for the detection and imaging of drug transporters, methods for the investigation of drug resistance in animal models, and strategies to evaluate the efficacy of resistance reversal agents. The book intends to provide a state-of-the-art collection of reviews and methods for both basic and clinician investigators who are interested in cancer multidrug resistance mechanisms and reversal strategies. Tianjin, China Jun Zhou v Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 Multidrug Resistance in Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Bruce C. Baguley 2 Multidrug Resistance in Oncology and Beyond: From Imaging of Drug Efflux Pumps to Cellular Drug Targets . . . . . . . . . . . . . . . . . . . . . . . . . .