Apparent Surface Currents Over the Monterey Submarine Canyon Measured by the Method of Towed Electrodes


Book Description

Five data cruises were taken on board R/V ACANIA to study the effect on the Geomagnetic Electrokinetograph (GEK) of various environmental factors, including wings, tides, and internal waves, over the Monterey Submarine Canyon. An in situ current meter was used successfully on one occasion to obtain data to establish a k-factor for the GEK in the Submarine Canyon, and to directly measure the particle velocities of internal waves. The observed surface currents measured with the GEK all exhibited little or no correlation with winds and tides. The flows were all generally southerly; their averages agreed with previous measurements made with the GEK. This direction of flow was opposite to the generalizations of Scott and possibly agreed with those of Pirie, depending upon the placement of one of his eddies. The k-factor for the GEK could not be determined because currents measured directly in the thermocline were found to be not correlated with the GEK measurements. However, the average current speeds were in reasonable agreement with currents measured at other times in Monterey Bay, leading to the conclusion that k cannot be much greater than the assumed value of 1.0. (Author).




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Masters Theses in the Pure and Applied Sciences


Book Description

Masters Theses in the Pure and Applied Sciences was first conceived, published, and dis seminated by the Center for lnformation and Numerica/ Data Analysis and Synthesis (C/NDAS) * at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the ac tivity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficia! to the academic and general scientific and technical community. After fi ve years of this joint undertaking we had concluded that it was in the interest of ali concerned if the printing and distribution of the volume were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and App/ied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. Ali back issues can also be ordered from Plenum. We have reported in Volume 21 (thesis year 1976) a total of 10,586 theses titles from 25 Canadian and 219 United States universities. We are sure that this broader base for theses titles reported will greatly enhance the value of this important annual reference work.
















Submarine Mass Movements and Their Consequences


Book Description

Submarine mass movements represent major offshore geohazards due to their destructive and tsunami-generation potential. This potential poses a threat to human life as well as to coastal, nearshore and offshore engineering structures. Recent examples of catastrophic submarine landslide events that affected human populations (including tsunamis) are numerous; e.g., Nice airport in 1979, Papua-New Guinea in 1998, Stromboli in 2002, Finneidfjord in 1996, and the 2006 and 2009 failures in the submarine cable network around Taiwan. The Great East Japan Earthquake in March 2011 also generated submarine landslides that may have amplified effects of the devastating tsunami. Given that 30% of the World’s population live within 60 km of the coast, the hazard posed by submarine landslides is expected to grow as global sea level rises. This elevated awareness of the need for better understanding of submarine landslides is coupled with great advances in submarine mapping, sampling and monitoring technologies. Laboratory analogue and numerical modeling capabilities have also developed significantly of late. Multibeam sonar, 3D seismic reflection, and remote and autonomous underwater vehicle technologies provide hitherto unparalleled imagery of the geology beneath the oceans, permitting investigation of submarine landslide deposits in great detail. Increased and new access to drilling, coring, in situ measurements and monitoring devices allows for ground-thruth of geophysical data and provides access to samples for geotechnical laboratory experiments and information on in situ strength and effective stress conditions of underwater slopes susceptible to fail. Great advances in numerical simulation techniques of submarine landslide kinematics and tsunami propagation, particularly since the 2004 Sumatra tsunami, have also lead to increased understanding and predictability of submarine landslide consequences. This volume consists of the latest scientific research by international experts in geological, geophysical, engineering and environmental aspects of submarine mass failure, focused on understanding the full spectrum of challenges presented by submarine mass movements and their consequences.




Measuring Discharge with Acoustic Doppler Current Profilers from a Moving Boat


Book Description

The mission of the U.S. Geological Survey (USGS) Water Resources Discipline is to provide the information and understanding needed for wise management of the Nation's water resources. Inherent in this mission is the responsibility of collecting data that accurately describe the physical, chemical, and biological attributes of water systems. These data are used for environmental and resource assessments by the USGS, other government agencies and scientific organizations, and the general public. Reliable and quality-assured data are essential to the credibility and impartiality of the water-resources appraisals carried out by the USGS.




Introduction to Physical Oceanography


Book Description

For decades, previous editions of John Knauss’s seminal work have struck a balance between purely descriptive texts and mathematically rigorous ones, giving a wide range of marine scientists access to the fundamental principles of physical oceanography. Newell Garfield continues this tradition, delivering valuable updates that highlight the book’s resourceful presentation and concise effectiveness. The authors include historical and current research, along with a 12-page color insert, to illuminate their perspective that the world ocean is tumultuous and continually helps to shape global environmental processes. The Third Edition builds a solid foundation that readers will find straightforward and lucid. It presents valuable insight into our understanding of the world ocean by: • Encompassing essential oceanic processes such as the transfer of heat across the ocean surface, the distribution of temperature and salinity, and the effect of the earth’s rotation on the ocean. • Providing sensible and well-defined explanations of the roles played by a stratified ocean, global balances, and equations of motion. • Discussing cogent topics such as major currents, tides, waves, coastal oceans, semienclosed seas, and sound and optics.