Systematic Analysis of Gear Failures


Book Description

Explores the detailed steps necessary to determine the causes of failure. First, the physical characteristics of a gear are studied: where the stress points are, from what directions the forces are applied, where the movement of material progresses, and where strain patterns exist. Second, all external conditions and forces are considered. With this background information, a systematic examination is described from beginning to end, the end being a conclusion about the mode and cause of failure.




Gears and Gear Cutting


Book Description

Gears in one form or another are part of most mechanisms, but they are by no means as simple as they may appear. This book explains simply and comprehensively the underlying theory involved, and in its second part, how to cut gears on a lathe or milling machine.




Appearance of Gear Teeth


Book Description




Gear Materials, Properties, and Manufacture


Book Description

All of the critical technical aspects of gear materials technology are addressed in this reference work. Gear Materials, Properties, and Manufacture is intended for gear metallurgists and materials specialists, manufacturing engineers, lubrication technologists, and analysts concerned with gear failures who seek a better understanding of gear performance and gear life. This volume complements other gear texts that emphasize the design, geometry, and theory of gears.







Direct Gear Design


Book Description

Over the last several decades, gearing development has focused on improvements in materials, manufacturing technology and tooling, thermal treatment, and coatings and lubricants. In contrast, gear design methods have remained frozen in time, as the vast majority of gears are designed with standard tooth proportions. This over-standardization significantly limits the potential performance of custom gear drives, especially in demanding aerospace or automotive applications. Direct Gear Design introduces an alternate gear design approach to maximize gear drive performance in custom gear applications. Developed by the author, the Direct Gear Design® method has been successfully implemented in a wide variety of custom gear transmissions over the past 30 years. The results are maximized gear drive performance, increased transmission load capacity and efficiency, and reduced size and weight. This book explains the method clearly, making it easy to apply to actual gear design. Describes the origin and theoretical foundations of the Direct Gear Design approach as well as some of its applications—and its limits Details the optimization techniques and the specifics of Direct Gear Design Discusses how this approach can be used with asymmetric gears to further improve performance Describes tolerance selection, manufacturing technologies, and measurement methods of custom gears Compares Direct Gear Design with traditional gear design from both an analytical and an experimental perspective Illustrates the applicability and benefits of this gear design approach with implementation examples Written by an engineer for engineers, this book presents a unique alternative to traditional gear design. It inspires readers to explore ways of improving gear transmission performance in custom gear applications, from higher transmission load capacity, efficiency, and reliability to lower size, weight, and cost.




Finishing of Conical Gears by Pulsed Electrochemical Honing


Book Description

This book sheds light on the development of Pulsed-Electrochemical Honing (PECH), a unique hybrid finishing process, which has capabilities of finishing intricate shaped components (especially gears). The text covers the fundamentals of the process, and details all parameters of PECH in the finishing of straight bevel gears. It discusses all important aspects of electrochemical honing, and details recent developments in tools, technologies, controls and operations.




The Geometry of Involute Gears


Book Description

Of all the many types of machine elements which exist today, gears are among the most commonly used. The basic idea of a wheel with teeth is extremely simple, and dates back several thousand years. It is obvious to any observer that one gear drives another by means of the meshing teeth, and to the person who has never studied gears, it might seem that no further explanation is required. It may therefore come as a surprise to discover the large quantity of geometric theory that exists on the subject of gears, and to find that there is probably no branch of mechanical engineering where theory and practice are more closely linked. Enormous improvements have been made in the performance of gears during the last two hundred years or so, and this has been due principally to the careful attention given to the shape of the teeth. The theoretical shape of the tooth profile used in most modern gears is an involute. When precision gears are cut by modern gear-cutting machines, the accuracy with which the actual teeth conform to their theoretical shape is quite remarkable, and far exceeds the accuracy which is attained in the manufacture of most other types of machine elements. The first part of this book deals with spur gears, which are gears with teeth that are parallel to the gear axis. The second part describes helical gears, whose teeth form helices about the gear axis.




Performance-Based Gear Metrology


Book Description

A mathematically rigorous explanation of how manufacturing deviations and damage on the working surfaces of gear teeth cause transmission-error contributions to vibration excitations Some gear-tooth working-surface manufacturing deviations of significant amplitude cause negligible vibration excitation and noise, yet others of minuscule amplitude are a source of significant vibration excitation and noise. Presently available computer-numerically-controlled dedicated gear metrology equipment can measure such error patterns on a gear in a few hours in sufficient detail to enable accurate computation and diagnosis of the resultant transmission-error vibration excitation. How to efficiently measure such working-surface deviations, compute from these measurements the resultant transmission-error vibration excitation, and diagnose the manufacturing source of the deviations, is the subject of this book. Use of the technology in this book will allow quality spot checks to be made on gears being manufactured in a production run, to avoid undesirable vibration or noise excitation by the manufactured gears. Furthermore, those working in academia and industry needing a full mathematical understanding of the relationships between tooth working-surface deviations and the vibration excitations caused by these deviations will find the book indispensable for applications pertaining to both gear-quality and gear-health monitoring. Key features: Provides a very efficient method for measuring parallel-axis helical or spur gears in sufficient detail to enable accurate computation of transmission-error contributions from working-surface deviations, and algorithms required to carry out these computations, including examples Provides algorithms for computing the working-surface deviations causing any user-identified tone, such as ‘ghost tones,’ or ‘sidebands’ of the tooth-meshing harmonics, enabling diagnosis of their manufacturing causes, including examples Provides explanations of all harmonics observed in gear-caused vibration and noise spectra. Enables generation of three-dimensional displays and detailed numerical descriptions of all measured and computed working-surface deviations, including examples




Theory of Gearing


Book Description

Written by a leading expert, Theory of Gearing: Kinematics, Geometry, and Synthesis, Second Edition is intended for engineers and researchers in the field of gear design, gear production, gear inspection, and application of gears. It focuses on the scientific theory of gearing, in all its aspects, and its application to new gear types and designs.