Design Safety Considerations for Water Cooled Small Modular Reactors Incorporating Lessons Learned from the Fukushima Daiichi Accident


Book Description

This publication presents technology developers and users with common considerations, approaches and measures for enhancing the defence in depth and operability of water cooled small modular reactor (SMR) design concepts to cope with extreme natural hazards. Indicative requirements to prevent an accident such as the Fukushima Daiichi accident from recurring are also provided for States planning to adopt water cooled SMR designs and technologies. This publication was produced within the framework of the IAEA Action Plan on effectively utilizing research and development.







Safety of Nuclear Power Plants


Book Description

On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.




Handbook of Small Modular Nuclear Reactors


Book Description

Handbook of Small Modular Nuclear Reactors, Second Edition is a fully updated comprehensive reference on Small Modular Reactors (SMRs), which reflects the latest research and technological advances in the field from the last five years. Editors Daniel T. Ingersoll and Mario D. Carelli, along with their team of expert contributors, combine their wealth of collective experience to update this comprehensive handbook that provides the reader with all required knowledge on SMRs, expanding on the rapidly growing interest and development of SMRs around the globe. This book begins with an introduction to SMRs for power generation, an overview of international developments, and an analysis of Integral Pressurized Water Reactors as a popular class of SMRs. The second part of the book is dedicated to SMR technologies, including physics, components, I&C, human-system interfaces and safety aspects. Part three discusses the implementation of SMRs, covering economic factors, construction methods, hybrid energy systems and licensing considerations. The fourth part of the book provides an in-depth analysis of SMR R&D and deployment of SMRs within eight countries, including the United States, Republic of Korea, Russia, China, Argentina, and Japan. This edition includes brand new content on the United Kingdom and Canada, where interests in SMRs have increased considerably since the first edition was published. The final part of the book adds a new analysis of the global SMR market and concludes with a perspective on SMR benefits to developing economies. This authoritative and practical handbook benefits engineers, designers, operators, and regulators working in nuclear energy, as well as academics and graduate students researching nuclear reactor technologies. - Presents the latest research on SMR technologies and global developments - Includes new case study chapters on the United Kingdom and Canada and a chapter on global SMR markets - Discusses new technologies such as floating SMRs and molten salt SMRs




Establishing the Safety Infrastructure for a Nuclear Power Programme


Book Description

"This Safety Guide provides guidance on the establishment of a national nuclear safety infrastructure as a key component of the overall preparations required for emerging nuclear power programmes. It provides recommendations, presented in the form of 200 sequential actions, on meeting the applicable IAEA safety requirements during the first three phases of the development of a nuclear power programme. It is intended for use by persons or organizations participating in the preparation and implementation of a nuclear power programme, including government officials and legislative bodies, regulatory bodies, operating organizations and external support entities."--Provided by publisher.




Safety Classification of Structures, Systems and Components in Nuclear Power Plants


Book Description

This Safety Guide provides recommendations and guidance on how to meet the requirements established in Specific Safety Requirements No. SSR-2/1 and in General Safety Requirements No. GSR Part 4 for the identification of structures, systems and components (SSCs) important to safety in nuclear power plants and for their classification on the basis of their function and safety significance. This Safety Guide is intended primarily for use by organizations involved in the design of nuclear power plants, as well as by regulatory bodies and their technical support organizations. The Safety Guide can also be applied to other nuclear installations subject to appropriate adjustments relevant to the specific design of the type of the facility being considered.




Development and Application of Level 2 Probabilistic Safety Assessment for Nuclear Power Plants


Book Description

The objective of this Safety Guide is to provide recommendations for meeting the IAEA safety requirements in performing or managing a level 2 probabilistic safety assessment (PSA) project for a nuclear power plant; thus it complements the Safety Guide on level 1 PSA. One of the aims of this Safety Guide is to promote a standard framework, standard terms and a standard set of documents for level 2 PSAs to facilitate regulatory and external peer review of their results. It describes all elements of the level 2 PSA that need to be carried out if the starting point is a fully comprehensive level 1 PSA. Contents: 1. Introduction; 2. PSA project management and organization; 3. Identification of design aspects important to severe accidents and acquisition of information; 4. Interface with level 1 PSA: Grouping of sequences; 5. Accident progression and containment analysis; 6. Source terms for severe accidents; 7. Documentation of the analysis: Presentation and interpretation of results; 8. Use and applications of the PSA; References; Annex I: Example of a typical schedule for a level 2 PSA; Annex II: Computer codes for simulation of severe accidents; Annex III: Sample outline of documentation for a level 2 PSA study.




Applicability of IAEA Safety Standards to Non-Water Cooled Reactors and Small Modular Reactors


Book Description

In response to an increase in global activities related to non-water-cooled reactors and small modular reactors, this new Safety Report documenting areas of novelty of these technologies when compared to the current fleet of reactors has been developed. The impact of these areas of novelty on the applicability and completeness of the IAEA safety standards is assessed in the publication. Gaps and areas for additional consideration are identified. The review undertaken to develop this report encompassed the safety standards related to the lifetime of these reactor technologies. The publication also considers the interface between safety, security, and safeguards in the design of these technologies.




Safety Assessment for Spent Fuel Storage Facilities


Book Description

Describes international approaches for maintaining fuel subcritical, removing residual heat, providing radiation protection and containing radioactive materials for the lifetime of a facility. It is intended to provide details on the safety assessment of interim spent fuel storage facilities that are not an integral part of an operating plant.




Deterministic Safety Analysis for Nuclear Power Plants


Book Description

Deterministic safety analysis is an essential component of safety assessment, particularly for safety demonstration of the design of nuclear power plants (NPPs). The objective of deterministic safety analysis is to confirm that safety functions can be fulfilled and that the necessary structures, systems and components, in combination with operator actions, are effective in keeping the releases of radioactive material from the plant below acceptable limits. Deterministic safety analysis, supplemented by further specific information and analysis, including probabilistic safety analysis, is also intended to demonstrate that the source term and the potential radiological consequences of different plant states are acceptable, and that the possibility of certain conditions arising that could lead to an early or a large radioactive release can be considered as 'practically eliminated'. The publication has been updated to maintain consistency with current IAEA safety requirements and to reflect lessons from the Fukushima Daiichi accident. It takes into account current practices and experience from deterministic safety analyses for NPPs being performed around the world.