Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications


Book Description

This title reports on the latest research in the area of aerodynamic efficency of various fixed-wing, flapping wing, and rotary wing concepts. It presents the progress made by over fifty active researchers in the field.




Low Reynolds Number


Book Description

This book reports the latest development and trends in the low Re number aerodynamics, transition from laminar to turbulence, unsteady low Reynolds number flows, experimental studies, numerical transition modelling, control of low Re number flows, and MAV wing aerodynamics. The contributors to each chapter are fluid mechanics and aerodynamics scientists and engineers with strong expertise in their respective fields. As a whole, the studies presented here reveal important new directions toward the realization of applications of MAV and wind turbine blades.




Airfoils at Low Speeds


Book Description




Experimentation, Validation, and Uncertainty Analysis for Engineers


Book Description

Helps engineers and scientists assess and manage uncertainty at all stages of experimentation and validation of simulations Fully updated from its previous edition, Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes expanded coverage and new examples of applying the Monte Carlo Method (MCM) in performing uncertainty analyses. Presenting the current, internationally accepted methodology from ISO, ANSI, and ASME standards for propagating uncertainties using both the MCM and the Taylor Series Method (TSM), it provides a logical approach to experimentation and validation through the application of uncertainty analysis in the planning, design, construction, debugging, execution, data analysis, and reporting phases of experimental and validation programs. It also illustrates how to use a spreadsheet approach to apply the MCM and the TSM, based on the authors’ experience in applying uncertainty analysis in complex, large-scale testing of real engineering systems. Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition includes examples throughout, contains end of chapter problems, and is accompanied by the authors’ website www.uncertainty-analysis.com. Guides readers through all aspects of experimentation, validation, and uncertainty analysis Emphasizes the use of the Monte Carlo Method in performing uncertainty analysis Includes complete new examples throughout Features workable problems at the end of chapters Experimentation, Validation, and Uncertainty Analysis for Engineers, Fourth Edition is an ideal text and guide for researchers, engineers, and graduate and senior undergraduate students in engineering and science disciplines. Knowledge of the material in this Fourth Edition is a must for those involved in executing or managing experimental programs or validating models and simulations.




Low-speed Experimental Investigation of a Thin, Faired, Double-wedge Airfoil Section with Nose and Trailing-edge Flaps


Book Description

A faired, double-wedge airfoil section, 4.23 percent thick, was investigated with plain nose and trailing-edge flaps. The nose flap was 0.16 chord of the airfoil and the trailing-edge flap was 0.25 chord of the airfoil. Section lift, drag, and pitching-momnet data are presented for a Reynolds number of 5,800,000 which corresponded to a Mach number of 0.17.




Aerodynamics of Low Reynolds Number Flyers


Book Description

Low Reynolds number aerodynamics is important to a number of natural and man-made flyers. Birds, bats, and insects have been of interest to biologists for years, and active study in the aerospace engineering community, motivated by interest in micro air vehicles (MAVs), has been increasing rapidly. The primary focus of this book is the aerodynamics associated with fixed and flapping wings. The book consider both biological flyers and MAVs, including a summary of the scaling laws-which relate the aerodynamics and flight characteristics to a flyer's sizing on the basis of simple geometric and dynamics analyses, structural flexibility, laminar-turbulent transition, airfoil shapes, and unsteady flapping wing aerodynamics. The interplay between flapping kinematics and key dimensionless parameters such as the Reynolds number, Strouhal number, and reduced frequency is highlighted. The various unsteady lift enhancement mechanisms are also addressed, including leading-edge vortex, rapid pitch-up and rotational circulation, wake capture, and clap-and-fling.




Springer Handbook of Experimental Fluid Mechanics


Book Description

Accompanying DVD-ROM contains ... "all chapters of the Springer Handbook."--Page 3 of cover.




Distinct Aerodynamics of Insect-Scale Flight


Book Description

Insect-scale flapping wing flight vehicles can conduct environmental monitoring, disaster assessment, mapping, positioning and security in complex and challenging surroundings. To develop bio-inspired flight vehicles, systematic probing based on the particular category of flight vehicles is needed. This Element addresses the aerodynamics, aeroelasticity, geometry, stability and dynamics of flexible flapping wings in the insect flight regime. The authors highlight distinct features and issues, contrast aerodynamic stability between rigid and flexible wings, present the implications of the wing-aspect ratio, and use canonical models and dragonflies to elucidate scientific insight as well as technical capabilities of bio-inspired design.




Proceedings of International Conference on Intelligent Manufacturing and Automation


Book Description

This book gathers selected papers presented at the Second International Conference on Intelligent Manufacturing and Automation (ICIMA 2020), which was jointly organized by the Departments of Mechanical Engineering and Production Engineering at Dwarkadas J. Sanghvi College of Engineering (DJSCE), Mumbai, and by the Indian Society of Manufacturing Engineers (ISME). Covering a range of topics in intelligent manufacturing, automation, advanced materials and design, it focuses on the latest advances in e.g. CAD/CAM/CAE/CIM/FMS in manufacturing, artificial intelligence in manufacturing, IoT in manufacturing, product design & development, DFM/DFA/FMEA, MEMS & nanotechnology, rapid prototyping, computational techniques, nano- & micro-machining, sustainable manufacturing, industrial engineering, manufacturing process management, modelling & optimization techniques, CRM, MRP & ERP, green, lean & agile manufacturing, logistics & supply chain management, quality assurance & environmental protection, advanced material processing & characterization of composite & smart materials. The book is intended as a reference guide for future researchers, and as a valuable resource for students in graduate and doctoral programmes.