Application of an Inverse Model in the Community Modeling Effort Results


Book Description

Inverse modeling activities in oceanography have recently been intensified, aided by the oncoming observational data stream of WOCE and the advance of computer power. However, interpretations of inverse model results from climatological hydrographic data are far from simple. This thesis examines the behavior of an inverse model in the WOCE CME (Community Modeling Effort) results where the physics and the parameter values are known. The ultimate hypotheses to be tested are whether the inferred circulations from a climatological hydrographic data set (where limited time means and spatial smoothing are usually used) represent the climatological ocean general circulations, and what the inferred "diffusion" coefficients really are. The inverse model is first tested in a non-eddy resolving numerical GCM ocean. Numerical/scale analyses are used to test whether the inverse model properly represents the GCM ocean. Experiments show how biased answers could result from an incorrect model, and how a correct model must produce the right answers. When the inverse model is applied to the time-mean hydrographic data of an eddy-resolving GCM ocean in the fine grid resolution of the GCM, the estimated horizontal circulation is statistically consistent with the EGCM time means in both patterns and values. Although the flow patterns are similar, the uncertainties for the GCM time means and the inverse model estimates are different. The former are very large, such that the GCM time-mean circulation has no significance in the deep ocean. The latter are much smaller, and with them the estimated circulations are well defined. This is consistent with the concept that ocean motions are very energetic, while variations of tracers (temperature, salinity) are low frequency. The inverse model succeeded in extracting the ocean general circulation from the "climatological" hydrographic data. The estimated vertical velocities are also statistically indistinguishable from the GCM time means. However, significant differences between the estimated "diffusion" coefficients and the EGCM eddy diffusion coefficients are found at certain locations. These discrepancies are attributed to the differences in physics of the inverse model and the EGCM ocean. The "diffusion" coefficients from the inversion parameterize not only the eddy fluxes, but also (part of) the temporal variation and biharmonic terms which are not explicitly included in the inverse model. Given the essentially red spectrum of the ocean, it makes sense to look for smooth solutions. Aliasing due to subsampling on a coarse grid and the effects of spatial smoothing are addressed in the last part of this thesis. It is shown that this aliasing could be greatly reduced by spatial smoothing. The estimated horizontal circulation from the spatially smoothed time-mean EGCM hydrographic data with a coarse grid resolution (2.4° longitude by 2.0° latitude) is generally consistent with the spatially smoothed EGCM time means. Significant differences only occur at some grid points at great depths, where the GCM circulations are very weak. The conclusions of this study are different from some previous studies. These discrepancies are explained in the concluding chapter. Finally, it should be pointed out that the issue of properly representing a GCM ocean by an inverse model is not identical to the issue of represent ing the real ocean by the same inverse model, since the GCM ocean is not identical to the real ocean. Numerical calculations show that both the non-eddy resolving and the eddy-resolving GCM oceans used in this work are evolving towards a statistical equilibrium. In the real ocean, the importance of temporal variation terms in the property conservation equations should also be analyzed when a steady mverse model is applied to a limited time-mean (the climatological) data set.




Application of an Inverse Model in the Community Modeling Effort Results


Book Description

Inverse modeling activities in oceanography have recently been intensified, aided by the oncoming observational data stream of WOCE and the advance of computer power. However, interpretations of inverse model results from climatological hydrographic data are far from simple. This thesis examines the behavior of an inverse model in the WOCE CME (Community Modeling Effort) results where the physics and the parameter values are known. The ultimate hypotheses to be tested are whether the inferred circulations from a climatological hydrographic data set (where limited time means and spatial smoothing are usually used) represent the climatological ocean general circulations, and what the inferred "diffusion" coefficients really are. The inverse model is first tested in a non-eddy resolving numerical GCM ocean. Numerical/scale analyses are used to test whether the inverse model properly represents the GCM ocean. Experiments show how biased answers could result from an incorrect model, and how a correct model must produce the right answers. When the inverse model is applied to the time-mean hydrographic data of an eddy-resolving GCM ocean in the fine grid resolution of the GCM, the estimated horizontal circulation is statistically consistent with the EGCM time means in both patterns and values. Although the flow patterns are similar, the uncertainties for the GCM time means and the inverse model estimates are different. The former are very large, such that the GCM time-mean circulation has no significance in the deep ocean. The latter are much smaller, and with them the estimated circulations are well defined. This is consistent with the concept that ocean motions are very energetic, while variations of tracers (temperature, salinity) are low frequency. The inverse model succeeded in extracting the ocean general circulation from the "climatological" hydrographic data. The estimated vertical velocities are also statistically indistinguishable from the GCM time means. However, significant differences between the estimated "diffusion" coefficients and the EGCM eddy diffusion coefficients are found at certain locations. These discrepancies are attributed to the differences in physics of the inverse model and the EGCM ocean. The "diffusion" coefficients from the inversion parameterize not only the eddy fluxes, but also (part of) the temporal variation and biharmonic terms which are not explicitly included in the inverse model. Given the essentially red spectrum of the ocean, it makes sense to look for smooth solutions. Aliasing due to subsampling on a coarse grid and the effects of spatial smoothing are addressed in the last part of this thesis. It is shown that this aliasing could be greatly reduced by spatial smoothing. The estimated horizontal circulation from the spatially smoothed time-mean EGCM hydrographic data with a coarse grid resolution (2.4° longitude by 2.0° latitude) is generally consistent with the spatially smoothed EGCM time means. Significant differences only occur at some grid points at great depths, where the GCM circulations are very weak. The conclusions of this study are different from some previous studies. These discrepancies are explained in the concluding chapter. Finally, it should be pointed out that the issue of properly representing a GCM ocean by an inverse model is not identical to the issue of represent ing the real ocean by the same inverse model, since the GCM ocean is not identical to the real ocean. Numerical calculations show that both the non-eddy resolving and the eddy-resolving GCM oceans used in this work are evolving towards a statistical equilibrium. In the real ocean, the importance of temporal variation terms in the property conservation equations should also be analyzed when a steady mverse model is applied to a limited time-mean (the climatological) data set.







Physical Processes and Zooplankton Distribution in the Great South Channel


Book Description

This thesis addresses the question, "How do small-scale physics and biology combine to produce dense aggregations of certain species of zooplankton in the Great South Channel (GSC) of the Gulf of Maine?" The thesis consists of three relatively independent parts: an observational study made while following two right whales as they fed on dense patches of the copepod Galanus finmarchicus in the northern GSC; a detailed description of a tightly integrated set of biological and physical observations made in the GSC by means of a new instrument, the Video Plankton Recorder (VPR); and a two-dimensional Eulerian numerical model that simulates one way in which a physical flow field, combined with a biological behavior pattern, may produce dense plankton patches at a convergent front. Part I: Data from a wide variety of instruments was combined to produce a coherent picture of the physical and biological environment near two feeding right whales observed in June, 1989. Instruments included a CTD (with transmissometer), a MOCNESS net system, a 150-kHz ADCP, and a towed acoustic plankton profiler operating at 120 and 200 kHz. Acoustic data were intercalibrated with net-tow data and with "noise" in the transmissometer signal in order to estimate copepod abundance in the plankton patches on which the whales were feeding. One of the whales was observed to reverse course when copepod abundance dropped below about 1.5- 4.5 x 103 copepods/m3, which is consistent with independent estimates of the density of copepods necessary for a right whale to gain more energy from the prey it ingests than it loses to the extra hydrodynamic drag it experiences while feeding. Part II: The VPR is a towed underwater microscope designed to image plankton non-invasively with sufficient resolution to obtain information on the spatial distribut ion of organisms on scales ranging from millimeters to hundreds of kilometers. CTD instrumentation mounted on the VPR makes it possible to correlate biological and hydrographic data with great precision. This study reports data from one transect made across the GSC in May, 1992. The data show close correlations between hydrographic features (such as fronts, plumes and water masses) and broad-scale plankton distribution. In addition, it was possible to correlate the fine-scale (order tens of meters) patchiness in plankton distribution with the local stability of the water column (as indicated by gradient Richardson number). In one case, biological data provided an aid in determining the origin of one of the observed water masses. Part III: This chapter presents a two-dimensional Eulerian numerical model that shows how depth-keeping swimming behavior on the part of an organism, combined with a convergent flow field at a surface front, can create dense patches of the organism. In this model a steady-state flow field and vertical diffusivity field are prescribed, along with the initial distribution of the plankton. The plankton swim vertically with speeds that depend only on depth, but the form of that depth-dependence may take into account such factors as the vertical variation in light level or in the concentration of some prey organism. An analysis of various nondimensional parameters associated with the model illustrates the roles played in determining the final structure of the patch by such factors as diffusion, water velocity and details of the animals' swimming behavior. Output from the model is compared with data taken at a dense plankton patch observed near a front in the northern Great South Channel in early June, 1989







Oceanic Abstracts


Book Description










Annual Report


Book Description