Application of Combinatorial Tools for Solar Cell Improvement -- New High Performance Transparent Conducting Oxides


Book Description

Transparent conducting oxides (TCOs) can serve a variety of important functions in thin film photovoltaics such as transparent electrical contacts, antireflection coatings and chemical barriers. Two areas of particular interest are TCOs that can be deposited at low temperatures and TCOs with high carrier mobilities. We have employed combinatorial high-throughput approaches to investigate both these areas. Conductivities of s = 2500 W-1-cm-1 have been obtained for In-Zn-O (IZO) films deposited at 100 C and s> 5000 W-1-cm-1 for In-Ti-O (ITiO) and In-Mo-O (IMO) films deposited at 550 C. The highest mobility obtained was 83 cm2/V-sec for ITiO deposited at 550 C.




High-Throughput Analysis


Book Description

This book, edited by Potyrailo and Amis, addresses a new paradigm-shifting approach in the search for new materials-Combinatorial Materials Science. One way to consider such an approach is to imagine an adventurous chef who decides to look for new entrees by cooking food ingredients in many pots using different combinations in every pot, and boil ing, steaming, or frying them in various ways. Although most of the pots will not have the tastiest food ever devised, some recipes will taste intriguing, and some eventually will lead to a discovery of a new fascinating cuisine. Of course, having a skilled chef design the com binatorial formulation will certainly be helpful in ensuring a successful outcome. Similar to food, each engineering material is a complex product of its chemical composition, structure, and processing. Generally, each of these components matters---change one and you get another material. Most of these "new" materials will be less good than ones we use now since existing materials have been refined with the extensive work of scientists and engi neers. At the same time if one prepares diverse materials like our adventurous chef, chang ing material composition, processing conditions and time, etc. , some of these materials will be superior to existing ones and a few might represent breakout technology.










Hybrid Transparent Conductive Oxide Nanostructured Materials for Photovoltaic Applications


Book Description

In Ontario, there are great incentives to invest in solar cell research through the Feed-In Tariff program, which has successfully increased the total connected capacity of solar power in Ontario to well over 215 MW. Extensive studies have been conducted on fabrication of efficient solar cells, with the most mature technology being silicon-based solar cells. However, other types of solar cells have been introduced as alternatives to silicon based solar cells due to their laborious work, energy consumption, and high cost of production. Different inorganic and organic photovoltaic systems including dye-sensitized, organic/polymer, quantum-dot, and hybrid nanocrystal/polymer hetero-junctions solar cells have been proposed to provide comparable efficiencies. Transparent conductive oxides are usually the main component in any solar system because of its role as an electrode photoanode, acting as a diffusion barrier and an open-circuit voltage attenuator. These are due to their high electrical conductivity, wide optical transmittance, and relatively ease of synthesis. As a result, a rich amount of studies on their synthesis, modification, and application as photo-catalytic electrodes, gas sensors, photonic crystals, and solar cell photoanodes exists in the literature. Their use in photovoltaics as thin film materials has since evolved into nanostructured films, as numerous studies have showed that the material morphology is an important parameter in improving solar cell performance. Many nanostructured transparent conductive oxide films have been extensively investigated for use as an n-type semiconductor in a p-n junction solar cell system or as a photoanode in a dye-sensitized solar cell (DSSC). Thus far these applications have proven challenging in terms of achieving high device efficiencies, particularly by taking advantage of their inherently higher surface area-to-volume ratio, better photon harvesting, and enhanced interparticle charge transport with shorter diffusion lengths across the device structure. With a large direct band gap (3.37 eV), a large exciton binding energy (60 m eV), and high electron mobility (120 cm2 V-1 s-1), zinc oxide (ZnO) is considered an excellent candidate as an (n-type) transparent semiconducting material at room temperature for photovoltaic application. In the present work, two different ZnO nanostructural morphologies are prepared by controlling the electrolyte conductivity using a direct, catalyst- and seed-layer free electrodeposition method. The effect of deposition time and temperature on the growth of the high-specific-surface-area ZnO nanotubes electrodeposited is studied. Furthermore, the morphology, crystallinity, and chemical composition of the resulting ZnO nanotubes and nanorods are fully characterized with a proposed model of their growth mechanism. These one-dimensional ZnO nanostructures are then employed as an n-type semiconductor, along with a p-type Cu2O thin film, to fabricate an inorganic p-n junction solar cell. As an important step to improve device performance, the electrical and optical properties of the p-type Cu2O film are optimized by simple annealing. Two different device structures, consisting of the electrodeposited ZnO nanorods and nanotubes grown on the top of a thick n-type ZnO seed layer (500 nm) covered by an optimized (2.5[mu]m) p-type Cu2O layer (in order to provide the full built-in potential across the junction area), are fabricated. The relations of structural morphology (i.e. nanotube vs nanorod) and characteristic solar cell parameters are investigated. The new device architecture is found to offer minimum leakage path and reduced recombination loss expected in a typical nanostructure-based solar cell. A photon-to-electron conversion efficiency (PCE) of 0.8 % is obtained for ZnO nanotubes compared to other traditional one-dimensional nanostructures (i.e. nanorods or nanowires) that is due to the increased junction area and the better charge collection. These results illustrate the advantage of single-step electrodeposition of ZnO nanotubes, which provide a larger interfacial area and a much lower defect density than previously reported nanotubes obtained by etching ZnO nanorods. Taking advantage of their higher electron dynamics than the classical TiO2, ZnO and SnO2 are employed as photoanode materials to fabricate an organic DSSC system. To further improve the optical absorption, the effects of surface modification using gold nanoparticles to ZnO nanotubes are investigated. Different gold electrolyte concentrations are used to manipulate the plasmonic nanoparticle size while deposition time is used to control the aerial density. These studies lead to a significant increase in the PCE for DSSC based on ZnO nanotubes with gold nanoparticle modification (6%) when compared to that with pristine ZnO nanotubes (4.7%). Surface decoration with plasmonic gold nanoparticles therefore provides an efficient approach to creating not only high surface area for superior loading of dye molecules but also enhanced absorption specifically in the visible range by taking advantage of their surface plasmon resonance effect. Hierarchical one-dimensional SnO2 nanostructures are also employed as photoanode material for DSSC application. With a band gap of 3.8 eV, low UV degradation characteristic and generally high thermal and chemical stability, SnO2 is also an excellent photoanode alternative to TiO2. Almost 10-fold enhancement of PCE (3.6%) when compared with pristine SnO2 nanobelts with (0.48%) is obtained for these hierarchical SnO2 nanostructures. This significant improvement is in part due to better dye loading of highly branched nanostructures. Additional surface passivation has also been performed on the as-deposited hierarchical SnO2 nanostructures by dip-coating with an MgO passivation layer of appropriately optimized thickness. Such an insulating layer is found to effectively reduce the recombination loss process caused by the higher electron mobility of SnO2 photoanode nanostructures. This MgO-passivation treatment further enhances the PCE to (4.14%). The present work therefore shows that one-dimensional ZnO and SnO2 nanostructures provide a viable, powerful platform for developing the next-generation photovoltaic devices. This study further demonstrates the novel techniques used to significantly enhance the PCEs for both inorganic p-n junction solar cell and organic DSSC.




Improved Transparent Conducting Oxides Boost Performance of Thin-Film Solar Cells (Fact Sheet).


Book Description

Today?s thin-film solar cells could not function without transparent conducting oxides (TCOs). TCOs act as a window, both protecting the cell and allowing light to pass through to the cell?s active layers. Until recently, TCOs were seen as a necessary, but static, layer of a thin-film photovoltaic (PV) cell. But a group of researchers at the National Renewable Energy Laboratory (NREL) has identified a pathway to producing improved TCO films that demonstrate higher infrared transparency. To do so, they have modified the TCOs in ways that did not seem possible a few years ago.




Combinatorial Exploration of Novel Transparent Conducting Oxide Materials


Book Description

High-throughput combinatorial approaches have been used for the discovery and optimization of transparent conducting oxide (TCO) materials for PV applications. We report on current investigations in In-Zn-O, In-Ti-O and In-Mo-O systems. The InZnO system is shown to be amorphous in the best conducting range with a conductivity of~ 3000 ohm-cm-1 for 50%-70% In/Zn. The amorphous InZnO films arevery smooth (2 ..ANG.. rms). In-Ti-O is found to be an excellent high-mobility TCO with mobilities of greater than 80 cm2/v-sec and conductivities of more than 6000 ohm-cm-1 for sputtered thin film materials.







Anti-reflection Zinc Oxide Nanocones for Higher Efficiency Thin-film Silicon Solar Cells


Book Description

Thin film silicon solar cells, which are commonly made from microcrystalline silicon ([mu]c-Si) or amorphous silicon (a-Si), have been considered inexpensive alternatives to thick polycrystalline silicon (polysilicon) solar cells. However, the low solar efficiency of these thin film cells has become a major problem, which prevents thin film silicon cells from being able to compete with other solar cells in the market. One source of inefficiency is the light reflection off the interface between the thin film cell's top Transparent Conducting Oxide (TCO) and the light absorbing silicon. In this work, we demonstrate the use of nanocone textured ZnO as the anti-reflection surface that mitigates this problem. The tapered structure of the nanocone forms a smooth transition of refractive index on the interface between the TCO (ZnO) and the silicon, effectively acting as a wideband Anti-Reflection coating (AR coating). Finite Difference Time Domain simulation is used to estimate the optimal ZnO nanocone parameter (periodicity and height) to be applied on a single junction microcrystalline silicon ([mu]c-Si) solar cell. Relative improvement over 25% in optical performance is achieved in the simulated structure when compared to state-of-the-art [mu]c-Si cell structure. Cheap and scalable colloidal lithography method is then developed to fabricate ZnO nanocone with the desired geometry. Since the ZnO texturing technique works by depositing ZnO on nanocone-textured glass substrate, the technique is potentially applicable to Transparent Conducting Oxides other than ZnO as well, making it a useful TCO texturing technique for solar cell applications.




Electrochemical Deposition of Transparent Conducting Oxides for Photovoltaic Applications


Book Description

Textured back reflector (BR) is an essential component used in substrate type solar cells for light trapping, which enhances the long wavelength absorption. Most commonly used BR consists of a reflecting metal layer(s) of Ag and/or Al and a transparent conducting oxide (TCO) layer such as ZnO. This type of BR, if properly textured, can lead to about 20% increase in the short-circuit current and cell efficiency. A widely used technique for producing the BR is sputtering due to its simplicity and easy operation for large area thin film solar cell applications. The TCO layer needs to be thick enough (>500 nm) to reach a textured structure and to prevent the metal in the BR from diffusing into the solar cell layers. Thus, the ZnO deposition becomes the bottleneck in the BR process. Significant efforts have been putting on developing novel techniques that can produce ZnO coatings with better texture and high deposition rate. To address the above issue electrodeposition was employed to coat ZnO film, because it gives high deposition rate at low cost. A systematic study of conventional electrodeposition was performed. Further improvements for the electrodeposition process have done to eliminate some of the problems associated with conventional electrodeposition. In addition highly textured BR produced by electrodeposited ZnO changes the electrical structure of the device. The necessity to consider these factors when fabricating solar cells on highly textured BR was emphasized using PVOPTICS and AMPS modeling. Hydrogen is considered to be the fuel of the future. Subsequently there are many attempts of generating H2 by environmentally friendly means. One such proposed system is photo-electrochemical cell (PEC) consist of transparent conducting corrosion resistive (TCCR) layer, a-Si:H solar cell and catalytic layer. The research work done to identify the potential TCCR layers and fabrication of porous nickel catalyst layer will be discussed.