Finite Element Modeling of Elastohydrodynamic Lubrication Problems


Book Description

Covers the latest developments in modeling elastohydrodynamic lubrication (EHL) problems using the finite element method (FEM) This comprehensive guide introduces readers to a powerful technology being used today in the modeling of elastohydrodynamic lubrication (EHL) problems. It provides a general framework based on the finite element method (FEM) for dealing with multi-physical problems of complex nature (such as the EHL problem) and is accompanied by a website hosting a user-friendly FEM software for the treatment of EHL problems, based on the methodology described in the book. Finite Element Modeling of Elastohydrodynamic Lubrication Problems begins with an introduction to both the EHL and FEM fields. It then covers Standard FEM modeling of EHL problems, before going over more advanced techniques that employ model order reduction to allow significant savings in computational overhead. Finally, the book looks at applications that show how the developed modeling framework could be used to accurately predict the performance of EHL contacts in terms of lubricant film thickness, pressure build-up and friction coefficients under different configurations. Finite Element Modeling of Elastohydrodynamic Lubrication Problems offers in-depth chapter coverage of Elastohydrodynamic Lubrication and its FEM Modeling, under Isothermal Newtonian and Generalized-Newtonian conditions with the inclusion of Thermal Effects; Standard FEM Modeling; Advanced FEM Modeling, including Model Order Reduction techniques; and Applications, including Pressure, Film Thickness and Friction Predictions, and Coated EHL. This book: Comprehensively covers the latest technology in modeling EHL problems Focuses on the FEM modeling of EHL problems Incorporates advanced techniques based on model order reduction Covers applications of the method to complex EHL problems Accompanied by a website hosting a user-friendly FEM-based EHL software Finite Element Modeling of Elastohydrodynamic Lubrication Problems is an ideal book for researchers and graduate students in the field of Tribology.




Finite Element Modeling of Elastohydrodynamic Lubrication Problems


Book Description

Covers the latest developments in modeling elastohydrodynamic lubrication (EHL) problems using the finite element method (FEM) This comprehensive guide introduces readers to a powerful technology being used today in the modeling of elastohydrodynamic lubrication (EHL) problems. It provides a general framework based on the finite element method (FEM) for dealing with multi-physical problems of complex nature (such as the EHL problem) and is accompanied by a website hosting a user-friendly FEM software for the treatment of EHL problems, based on the methodology described in the book. Finite Element Modeling of Elastohydrodynamic Lubrication Problems begins with an introduction to both the EHL and FEM fields. It then covers Standard FEM modeling of EHL problems, before going over more advanced techniques that employ model order reduction to allow significant savings in computational overhead. Finally, the book looks at applications that show how the developed modeling framework could be used to accurately predict the performance of EHL contacts in terms of lubricant film thickness, pressure build-up and friction coefficients under different configurations. Finite Element Modeling of Elastohydrodynamic Lubrication Problems offers in-depth chapter coverage of Elastohydrodynamic Lubrication and its FEM Modeling, under Isothermal Newtonian and Generalized-Newtonian conditions with the inclusion of Thermal Effects; Standard FEM Modeling; Advanced FEM Modeling, including Model Order Reduction techniques; and Applications, including Pressure, Film Thickness and Friction Predictions, and Coated EHL. This book: Comprehensively covers the latest technology in modeling EHL problems Focuses on the FEM modeling of EHL problems Incorporates advanced techniques based on model order reduction Covers applications of the method to complex EHL problems Accompanied by a website hosting a user-friendly FEM-based EHL software Finite Element Modeling of Elastohydrodynamic Lubrication Problems is an ideal book for researchers and graduate students in the field of Tribology.




Hydrodynamic Lubrication


Book Description

This book discusses hydrodynamic lubrication in detail, based on the author’s own researches. Although this subject plays an important role in mechanical engineering, few books have been published on the subject. The first four chapters of this book are preparations for the following five. This book was written with graduate students, researchers and designers in view.




Finite Element Methods: Basic Concepts And Applications


Book Description

Deals with the fundamentals of the finite element method. Beginning with the concept of one-dimensional heat transfer, the book progresses through two-dimensional elements and ultimately ends with a discussion on three-dimensional elements. Each chapter contains a set of example problems and exercises. Overall, the book is useful in describing how to develop and utilize finite element methodology to numerically solve problems.




Finite Element Analysis Applications


Book Description

Finite Element Analysis Applications: A Systematic and Practical Approach strikes a solid balance between more traditional FEA textbooks that focus primarily on theory, and the software specific guidebooks that help teach students and professionals how to use particular FEA software packages without providing the theoretical foundation. In this new textbook, Professor Bi condenses the introduction of theories and focuses mainly on essentials that students need to understand FEA models. The book is organized to be application-oriented, covering FEA modeling theory and skills directly associated with activities involved in design processes. Discussion of classic FEA elements (such as truss, beam and frame) is limited. Via the use of several case studies, the book provides easy-to-follow guidance on modeling of different design problems. It uses SolidWorks simulation as the platform so that students do not need to waste time creating geometries for FEA modelling. - Provides a systematic approach to dealing with the complexity of various engineering designs - Includes sections on the design of machine elements to illustrate FEA applications - Contains practical case studies presented as tutorials to facilitate learning of FEA methods - Includes ancillary materials, such as a solutions manual for instructors, PPT lecture slides and downloadable CAD models for examples in SolidWorks




The Finite Element Method in Engineering


Book Description

The Finite Element Method in Engineering introduces the various aspects of finite element method as applied to engineering problems in a systematic manner. It details the development of each of the techniques and ideas from basic principles. New concepts are illustrated with simple examples wherever possible. Several Fortran computer programs are given with example applications to serve the following purposes: to enable the reader to understand the computer implementation of the theory developed; to solve specific problems; and to indicate procedure for the development of computer programs for solving any other problem in the same area. The book begins with an overview of the finite element method. This is followed by separate chapters on numerical solution of various types of finite element equations; the general procedure of finite element analysis; the development higher order and isoparametric elements; and the application of finite element method for static and dynamic solid and structural mechanics problems like frames, plates, and solid bodies. Subsequent chapters deal with the solution of one-, two-, and three-dimensional steady state and transient heat transfer problems; the finite element solution of fluid mechanics problems; and additional applications and generalization of the finite element method.




Mechanics of Coatings


Book Description

Mechanics of Coatings was chosen as the topic for the 16th Leeds-Lyon Symposium, as it was decided to be a timely opportunity to bring together experts of many disciplines connected with coatings to find ways of extending the industrial use of these coatings particularly in the field of tribology. The volume contains 51 papers divided into 20 sessions.







Engineering Tribology


Book Description

Excellent graphic approach and simplified text clearly facilitate understanding of this vital engineering discipline.




Laser-Induced Periodic Surface Nano- and Microstructures for Tribological Applications


Book Description

This book is the printed edition of the Special Issue published in Materials. The book provides an overview of current international research activities in the field of friction and wear management through the laser processing of periodic surface micro- and nanostructures for technical and medical applications. Contributions of renowned scientists from academia and industry provide a bridge between the fields of tribology and laser material processing in order to foster current knowledge and present new ideas for future applications and new technologies.