Application of Intelligent Control Algorithms to Study the Dynamics of Hybrid Power System


Book Description

This book aims to systematically review and design different intelligent control algorithms for the small-signal stability assessment of HPS. With the growing consciousness of global warming and the fast depletion of natural power generation resources, the existing power system is on the verge of transitions to a “hybrid power system (HPS)” integrated with distributed energy resources. The recent results and requirements for the developments of intelligent control algorithms have motivated the authors to introduce this book for extensively analyzing the performance of HPS against unknown/uncertain disturbances. This book introduces fractional-order resilient control methodologies for arresting small-signal instability of HPS. The prospective investigation has been performed on the MATLAB platform. This book is helpful for undergraduate, postgraduate students, and research scholars working in power system stability, control applications, and soft computing in particular.




Power Engineering and Intelligent Systems


Book Description

The book presents a collection of the high-quality research articles in the field of power engineering, grid integration, energy management, soft computing, artificial intelligence, signal and image processing, data science techniques, and their real-world applications. The papers are presented at International Conference on Power Engineering and Intelligent Systems (PEIS 2023), held during June 24–25, 2023, at National Institute of Technology Delhi, India.




Advanced Frequency Regulation Strategies in Renewable-Dominated Power Systems


Book Description

Advanced Frequency Regulation Strategies in Renewable-Dominated Modern Power Systems discusses advanced control strategies positioned to attain stable and reliable electric power operation in highly renewable modern grids. These strategies are increasingly valuable components of the practitioner technical toolbox, and are essential to maintain frequency and voltage regulations, assert power quality standards, and ensure overall grid stability. This book focuses on the rapid integration of renewable-based generating units in power systems, highlighting state-of-the-art technologies and emerging topics pertaining to load frequency control, robust control strategies, and energy storage systems. Chapters are accompanied by case studies drawn from modern international practice. Disseminates novel control strategies for the reliable and robust control of renewable generating units Discusses implementation using case studies that address multiple frequency control applications across integrated modern power systems Accompanied by simulation models in MATLAB that are built to emphasize practical usage and address real-world problems




Artificial Intelligence Techniques in Power Systems


Book Description

The intention of this book is to give an introduction to, and an overview of, the field of artificial intelligence techniques in power systems, with a look at various application studies.




Methods and Applications of Intelligent Control


Book Description

This book is concerned with Intelligent Control methods and applications. The field of intelligent control has been expanded very much during the recent years and a solid body of theoretical and practical results are now available. These results have been obtained through the synergetic fusion of concepts and techniques from a variety of fields such as automatic control, systems science, computer science, neurophysiology and operational research. Intelligent control systems have to perform anthropomorphic tasks fully autonomously or interactively with the human under known or unknown and uncertain environmental conditions. Therefore the basic components of any intelligent control system include cognition, perception, learning, sensing, planning, numeric and symbolic processing, fault detection/repair, reaction, and control action. These components must be linked in a systematic, synergetic and efficient way. Predecessors of intelligent control are adaptive control, self-organizing control, and learning control which are well documented in the literature. Typical application examples of intelligent controls are intelligent robotic systems, intelligent manufacturing systems, intelligent medical systems, and intelligent space teleoperators. Intelligent controllers must employ both quantitative and qualitative information and must be able to cope with severe temporal and spatial variations, in addition to the fundamental task of achieving the desired transient and steady-state performance. Of course the level of intelligence required in each particular application is a matter of discussion between the designers and users. The current literature on intelligent control is increasing, but the information is still available in a sparse and disorganized way.




Intelligent Control in Energy Systems


Book Description

The editors of this Special Issue titled “Intelligent Control in Energy Systems” have attempted to create a book containing original technical articles addressing various elements of intelligent control in energy systems. In response to our call for papers, we received 60 submissions. Of those submissions, 27 were published and 33 were rejected. In this book, we offer the 27 accepted technical articles as well as one editorial. Authors from 15 countries (China, Netherlands, Spain, Tunisia, United Sates of America, Korea, Brazil, Egypt, Denmark, Indonesia, Oman, Canada, Algeria, Mexico, and the Czech Republic) elaborate on several aspects of intelligent control in energy systems. The book covers a broad range of topics including fuzzy PID in automotive fuel cell and MPPT tracking, neural networks for fuel cell control and dynamic optimization of energy management, adaptive control on power systems, hierarchical Petri Nets in microgrid management, model predictive control for electric vehicle battery and frequency regulation in HVAC systems, deep learning for power consumption forecasting, decision trees for wind systems, risk analysis for demand side management, finite state automata for HVAC control, robust μ-synthesis for microgrids, and neuro-fuzzy systems in energy storage.




Intelligent Control Systems


Book Description




Applications of Intelligent Control to Engineering Systems


Book Description

This book reflects the work of top scientists in the field of intelligent control and its applications, prognostics, diagnostics, condition based maintenance and unmanned systems. It includes results, and presents how theory is applied to solve real problems.




Optimal Power Flow Using Evolutionary Algorithms


Book Description

In today’s society, modern power grids are driven closer to transfer capacities due to increased consumption and power transfers, endangering the security of the systems. Providing methods in controlling variables to minimize costs, transmission loss, and voltage deviation of power system operation yields valuable economic information and insight into power flow. Optimal Power Flow Using Evolutionary Algorithms provides emerging research exploring the theoretical and practical aspects of optimizing power system operation through advanced electronic power devices. Featuring coverage on a broad range of topics such as hybridization algorithm, power system modeling, and transmission systems, this book is ideally designed for engineers, power system developers, academicians, and researchers seeking current research on emerging techniques in achieving quality power under normal operating conditions.




Computational Intelligence Applications to Power Systems


Book Description

This book represents a thoroughly comprehensive treatment of computational intelligence from an electrical power system engineer's perspective. Thorough, well-organised and up-to-date, it examines in some detail all the important aspects of this very exciting and rapidly emerging technology, including: expert systems, fuzzy logic, artificial neural networks, genetic algorithms and hybrid systems. Written in a concise and flowing manner, by experts in the area of electrical power systems who have had many years of experience in the application of computational intelligence for solving many complex and onerous power system problems, this book is ideal for professional engineers and postgraduate students entering this exciting field. This book would also provide a good foundation for senior undergraduate students entering into their final year of study.