Application of Optimization Algorithms in Chemistry


Book Description

This eBook is dedicated to Prof. William L. Hase, who passed away on Monday, March 23, 2020.




Optimization in Computational Chemistry and Molecular Biology


Book Description

Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches covers recent developments in optimization techniques for addressing several computational chemistry and biology problems. A tantalizing problem that cuts across the fields of computational chemistry, biology, medicine, engineering and applied mathematics is how proteins fold. Global and local optimization provide a systematic framework of conformational searches for the prediction of three-dimensional protein structures that represent the global minimum free energy, as well as low-energy biomolecular conformations. Each contribution in the book is essentially expository in nature, but of scholarly treatment. The topics covered include advances in local and global optimization approaches for molecular dynamics and modeling, distance geometry, protein folding, molecular structure refinement, protein and drug design, and molecular and peptide docking. Audience: The book is addressed not only to researchers in mathematical programming, but to all scientists in various disciplines who use optimization methods in solving problems in computational chemistry and biology.




Multi-Objective Optimization in Chemical Engineering


Book Description

For reasons both financial and environmental, there is a perpetual need to optimize the design and operating conditions of industrial process systems in order to improve their performance, energy efficiency, profitability, safety and reliability. However, with most chemical engineering application problems having many variables with complex inter-relationships, meeting these optimization objectives can be challenging. This is where Multi-Objective Optimization (MOO) is useful to find the optimal trade-offs among two or more conflicting objectives. This book provides an overview of the recent developments and applications of MOO for modeling, design and operation of chemical, petrochemical, pharmaceutical, energy and related processes. It then covers important theoretical and computational developments as well as specific applications such as metabolic reaction networks, chromatographic systems, CO2 emissions targeting for petroleum refining units, ecodesign of chemical processes, ethanol purification and cumene process design. Multi-Objective Optimization in Chemical Engineering: Developments and Applications is an invaluable resource for researchers and graduate students in chemical engineering as well as industrial practitioners and engineers involved in process design, modeling and optimization.




Stochastic Global Optimization


Book Description

Ch. 1. Introduction / Gade Pandu Rangaiah -- ch. 2. Formulation and illustration of Luus-Jaakola optimization procedure / Rein Luus -- ch. 3. Adaptive random search and simulated annealing optimizers : algorithms and application issues / Jacek M. Jezowski, Grzegorz Poplewski and Roman Bochenek -- ch. 4. Genetic algorithms in process engineering : developments and implementation issues / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 5. Tabu search for global optimization of problems having continuous variables / Sim Mong Kai, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 6. Differential evolution : method, developments and chemical engineering applications / Chen Shaoqiang, Gade Pandu Rangaiah and Mekapati Srinivas -- ch. 7. Ant colony optimization : details of algorithms suitable for process engineering / V.K. Jayaraman [und weitere] -- ch. 8. Particle swarm optimization for solving NLP and MINLP in chemical engineering / Bassem Jarboui [und weitere] -- ch. 9. An introduction to the harmony search algorithm / Gordon Ingram and Tonghua Zhang -- ch. 10. Meta-heuristics : evaluation and reporting techniques / Abdunnaser Younes, Ali Elkamel and Shawki Areibi -- ch. 11. A hybrid approach for constraint handling in MINLP optimization using stochastic algorithms / G.A. Durand [und weitere] -- ch. 12. Application of Luus-Jaakola optimization procedure to model reduction, parameter estimation and optimal control / Rein Luus -- ch. 13. Phase stability and equilibrium calculations in reactive systems using differential evolution and tabu search / Adrian Bonilla-Petriciolet [und weitere] -- ch. 14. Differential evolution with tabu list for global optimization : evaluation of two versions on benchmark and phase stability problems / Mekapati Srinivas and Gade Pandu Rangaiah -- ch. 15. Application of adaptive random search optimization for solving industrial water allocation problem / Grzegorz Poplewski and Jacek M. Jezowski -- ch. 16. Genetic algorithms formulation for retrofitting heat exchanger network / Roman Bochenek and Jacek M. Jezowski -- ch. 17. Ant colony optimization for classification and feature selection / V.K. Jayaraman [und weitere] -- ch. 18. Constraint programming and genetic algorithm / Prakash R. Kotecha, Mani Bhushan and Ravindra D. Gudi -- ch. 19. Schemes and implementations of parallel stochastic optimization algorithms application of tabu search to chemical engineering problems / B. Lin and D.C. Miller




State of the Art in Global Optimization


Book Description

Optimization problems abound in most fields of science, engineering, and tech nology. In many of these problems it is necessary to compute the global optimum (or a good approximation) of a multivariable function. The variables that define the function to be optimized can be continuous and/or discrete and, in addition, many times satisfy certain constraints. Global optimization problems belong to the complexity class of NP-hard prob lems. Such problems are very difficult to solve. Traditional descent optimization algorithms based on local information are not adequate for solving these problems. In most cases of practical interest the number of local optima increases, on the aver age, exponentially with the size of the problem (number of variables). Furthermore, most of the traditional approaches fail to escape from a local optimum in order to continue the search for the global solution. Global optimization has received a lot of attention in the past ten years, due to the success of new algorithms for solving large classes of problems from diverse areas such as engineering design and control, computational chemistry and biology, structural optimization, computer science, operations research, and economics. This book contains refereed invited papers presented at the conference on "State of the Art in Global Optimization: Computational Methods and Applications" held at Princeton University, April 28-30, 1995. The conference presented current re search on global optimization and related applications in science and engineering. The papers included in this book cover a wide spectrum of approaches for solving global optimization problems and applications.




Optimization in Chemical Engineering


Book Description

Optimization is used to determine the most appropriate value of variables under given conditions. The primary focus of using optimisation techniques is to measure the maximum or minimum value of a function depending on the circumstances. This book discusses problem formulation and problem solving with the help of algorithms such as secant method, quasi-Newton method, linear programming and dynamic programming. It also explains important chemical processes such as fluid flow systems, heat exchangers, chemical reactors and distillation systems using solved examples. The book begins by explaining the fundamental concepts followed by an elucidation of various modern techniques including trust-region methods, Levenberg–Marquardt algorithms, stochastic optimization, simulated annealing and statistical optimization. It studies the multi-objective optimization technique and its applications in chemical engineering and also discusses the theory and applications of various optimization software tools including LINGO, MATLAB, MINITAB and GAMS.




Deterministic Global Optimization


Book Description

The vast majority of important applications in science, engineering and applied science are characterized by the existence of multiple minima and maxima, as well as first, second and higher order saddle points. The area of Deterministic Global Optimization introduces theoretical, algorithmic and computational ad vances that (i) address the computation and characterization of global minima and maxima, (ii) determine valid lower and upper bounds on the global minima and maxima, and (iii) address the enclosure of all solutions of nonlinear con strained systems of equations. Global optimization applications are widespread in all disciplines and they range from atomistic or molecular level to process and product level representations. The primary goal of this book is three fold : first, to introduce the reader to the basics of deterministic global optimization; second, to present important theoretical and algorithmic advances for several classes of mathematical prob lems that include biconvex and bilinear; problems, signomial problems, general twice differentiable nonlinear problems, mixed integer nonlinear problems, and the enclosure of all solutions of nonlinear constrained systems of equations; and third, to tie the theory and methods together with a variety of important applications.




Chemical Optimization Algorithm for Fuzzy Controller Design


Book Description

In this book, a novel optimization method inspired by a paradigm from nature is introduced. The chemical reactions are used as a paradigm to propose an optimization method that simulates these natural processes. The proposed algorithm is described in detail and then a set of typical complex benchmark functions is used to evaluate the performance of the algorithm. Simulation results show that the proposed optimization algorithm can outperform other methods in a set of benchmark functions. This chemical reaction optimization paradigm is also applied to solve the tracking problem for the dynamic model of a unicycle mobile robot by integrating a kinematic and a torque controller based on fuzzy logic theory. Computer simulations are presented confirming that this optimization paradigm is able to outperform other optimization techniques applied to this particular robot application.




Global Optimization in Action


Book Description

In science, engineering and economics, decision problems are frequently modelled by optimizing the value of a (primary) objective function under stated feasibility constraints. In many cases of practical relevance, the optimization problem structure does not warrant the global optimality of local solutions; hence, it is natural to search for the globally best solution(s). Global Optimization in Action provides a comprehensive discussion of adaptive partition strategies to solve global optimization problems under very general structural requirements. A unified approach to numerous known algorithms makes possible straightforward generalizations and extensions, leading to efficient computer-based implementations. A considerable part of the book is devoted to applications, including some generic problems from numerical analysis, and several case studies in environmental systems analysis and management. The book is essentially self-contained and is based on the author's research, in cooperation (on applications) with a number of colleagues. Audience: Professors, students, researchers and other professionals in the fields of operations research, management science, industrial and applied mathematics, computer science, engineering, economics and the environmental sciences.




Advances and Trends in Optimization with Engineering Applications


Book Description

Optimization is of critical importance in engineering. Engineers constantly strive for the best possible solutions, the most economical use of limited resources, and the greatest efficiency. As system complexity increases, these goals mandate the use of state-of-the-art optimization techniques. In recent years, the theory and methodology of optimization have seen revolutionary improvements. Moreover, the exponential growth in computational power, along with the availability of multicore computing with virtually unlimited memory and storage capacity, has fundamentally changed what engineers can do to optimize their designs. This is a two-way process: engineers benefit from developments in optimization methodology, and challenging new classes of optimization problems arise from novel engineering applications. Advances and Trends in Optimization with Engineering Applications reviews 10 major areas of optimization and related engineering applications, providing a broad summary of state-of-the-art optimization techniques most important to engineering practice. Each part provides a clear overview of a specific area and discusses a range of real-world problems. The book provides a solid foundation for engineers and mathematical optimizers alike who want to understand the importance of optimization methods to engineering and the capabilities of these methods.