Blast Protection of Civil Infrastructures and Vehicles Using Composites


Book Description

With the upsurge in terrorism in recent years and the possibility of accidental blast threats, there is growing interest in manufacturing blast 'hardened' structures and retrofitting blast mitigation materials to existing structures. Composites provide the ideal material for blast protection as they can be engineered to give different levels of protection by varying the reinforcements and matrices.Part one discusses general technical issues with chapters on topics such as blast threats and types of blast damage, processing polymer matrix composites for blast protection, standards and specifications for composite blast protection materials, high energy absorbing composite materials for blast resistant design, modelling the blast response of hybrid laminated composite plates and the response of composite panels to blast wave pressure loadings. Part two reviews applications including ceramic matrix composites for ballistic protection of vehicles and personnel, using composites to protect military vehicles from mine blasts, blast protection of buildings using FRP matrix composites, using composites in blast resistant walls for offshore, naval and defence related structures, using composites to improve the blast resistance of columns in buildings, retrofitting using fibre reinforced polymer composites for blast protection of buildings and retrofitting to improve the blast response of concrete masonry walls.With its distinguished editor and team of expert contributors, Blast protection of civil infrastructures and vehicles using composites is a standard reference for all those concerned with protecting structures from the effects of blasts in both the civil and military sectors. - Reviews the role of composites in blast protection with an examination of technical issues, applications of composites and ceramic matrix composites - Presents numerical examples of simplified blast load computation and an overview of the basics of high explosives includes important properties and physical forms - Varying applications of composites for protection are explored including military and non-military vehicles and increased resistance in building columns and masonry walls







Blast Protection of Buildings


Book Description

Standard ASCE/SEI 59-22 provides minimum requirements for planning, design, construction, and assessment of new and existing buildings subject to the effects of accidental or malicious explosions.




Explosion Blast Response of Composites


Book Description

Explosion Blast Response of Composites contains key information on the effects of explosions, shock waves, and detonation products (e.g. fragments, shrapnel) on the deformation and damage to composites. The book considers the blast response of laminates and sandwich composites, along with blast mitigation of composites (including coating systems and energy absorbing materials). Broken down under the following key themes: Introduction to explosive blast response of composites, Air explosion blast response of composites, Underwater explosion blast response of composites, and High strain rate and dynamic properties of composites, the book deals with an important and contemporary topic due to the extensive use of composites in applications where explosive blasts are an ever-present threat, such as military aircraft, armoured vehicles, naval ships and submarines, body armour, and other defense applications. In addition, the growing use of IEDs and other types of bombs used by terrorists to attack civilian and military targets highlights the need for this book. Many terrorist attacks occur in subways, trains, buses, aircraft, buildings, and other civil infrastructure made of composite materials. Designers, engineers and terrorist experts need the essential information to protect civilians, military personnel, and assets from explosive blasts. - Focuses on key aspects, including both modeling, analysis, and experimental work - Written by leading international experts from academia, defense agencies, and other organizations - Timely book due to the extensive use of composites in areas where explosive blasts are an ever-present threat in military applications




Handbook for Blast Resistant Design of Buildings


Book Description

Unique single reference supports functional and cost-efficient designs of blast resistant buildings Now there's a single reference to which architects, designers, and engineers can turn for guidance on all the key elements of the design of blast resistant buildings that satisfy the new ASCE Standard for Blast Protection of Buildings as well as other ASCE, ACI, and AISC codes. The Handbook for Blast Resistant Design of Buildings features contributions from some of the most knowledgeable and experienced consultants and researchers in blast resistant design. This handbook is organized into four parts: Part 1, Design Considerations, sets forth basic principles, examining general considerations in the design process; risk analysis and reduction; criteria for acceptable performance; materials performance under the extraordinary blast environment; and performance verification for technologies and solution methodologies. Part 2, Blast Phenomena and Loading, describes the explosion environment, loading functions needed for blast response analysis, and fragmentation and associated methods for effects analysis. Part 3, System Analysis and Design, explains the analysis and design considerations for structural, building envelope, component space, site perimeter, and building system designs. Part 4, Blast Resistant Detailing, addresses the use of concrete, steel, and masonry in new designs as well as retrofitting existing structures. As the demand for blast resistant buildings continues to grow, readers can turn to the Handbook for Blast Resistant Design of Buildings, a unique single source of information, to support competent, functional, and cost-efficient designs.




Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications


Book Description

Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications comprises 411 papers that were presented at SEMC 2019, the Seventh International Conference on Structural Engineering, Mechanics and Computation, held in Cape Town, South Africa, from 2 to 4 September 2019. The subject matter reflects the broad scope of SEMC conferences, and covers a wide variety of engineering materials (both traditional and innovative) and many types of structures. The many topics featured in these Proceedings can be classified into six broad categories that deal with: (i) the mechanics of materials and fluids (elasticity, plasticity, flow through porous media, fluid dynamics, fracture, fatigue, damage, delamination, corrosion, bond, creep, shrinkage, etc); (ii) the mechanics of structures and systems (structural dynamics, vibration, seismic response, soil-structure interaction, fluid-structure interaction, response to blast and impact, response to fire, structural stability, buckling, collapse behaviour); (iii) the numerical modelling and experimental testing of materials and structures (numerical methods, simulation techniques, multi-scale modelling, computational modelling, laboratory testing, field testing, experimental measurements); (iv) innovations and special structures (nanostructures, adaptive structures, smart structures, composite structures, bio-inspired structures, shell structures, membranes, space structures, lightweight structures, long-span structures, tall buildings, wind turbines, etc); (v) design in traditional engineering materials (steel, concrete, steel-concrete composite, aluminium, masonry, timber, glass); (vi) the process of structural engineering (conceptualisation, planning, analysis, design, optimization, construction, assembly, manufacture, testing, maintenance, monitoring, assessment, repair, strengthening, retrofitting, decommissioning). The SEMC 2019 Proceedings will be of interest to civil, structural, mechanical, marine and aerospace engineers. Researchers, developers, practitioners and academics in these disciplines will find them useful. Two versions of the papers are available. Short versions, intended to be concise but self-contained summaries of the full papers, are in this printed book. The full versions of the papers are in the e-book.




Handbook of Fire & Explosion Protection Engineering Principles for Oil, Gas, Chemical, & Related Facilities


Book Description

The security and economic stability of many nations and multinational oil companies are highly dependent on the safe and uninterrupted operation of their oil, gas and chemical facilities. One of the most critical impacts that can occur to these operations are fires and explosions from accidental or political incidents. This publication is intended as a general engineering handbook and reference guideline for those personnel involved with fire and explosion protection aspects of critical hydrocarbon facilities. Design guidelines and specifications of major, small and independent oil companies as well as information from engineering firms and published industry references have been reviewed to assist in its preparation. Some of the latest published practices and research into fire and explosions have also been mentioned.




Advances in Protective Structures Research


Book Description

The International Association of Protective Structures (IAPS) was launched on 1 October 2010 in Manchester, UK during the first International Conference of Protective Structures. The primary purpose of IAPS is to bring researchers and engineers working in the area of protective structures together, and to promote research and development work for better life and structure protection against shock and impact loads. More information can be found at http://www.protectivestructures.org/contact.html. Advances in Protective Structures Research is the first publication in a series of planned publications by IAPS. It contains 13 chapters prepared by active and prominent researchers around the world in the area of protective structures. It covers the dynamic material model and material properties, structural response analysis, structural reliability analysis, impact loads and ground shock. The contents of the book reflect well the current research achievements and practice in structural protection against blast and impact loads. They represent the advanced international research status in theoretical derivations, numerical simulations, and laboratory and field tests for structure protections.







AMPTIAC Quarterly


Book Description