Applications and Principles of Quantum Computing


Book Description

In a world driven by technology and data, classical computing faces limitations in tackling complex challenges like climate modeling and financial risk assessment. These barriers impede our aspirations to revolutionize industries and solve intricate real-world problems. To bridge this gap, we must embrace quantum computing. Edited by Alex Khang PH, Principles and Applications of Quantum Computing is a transformative solution to this challenge. It delves into the interdisciplinary realms of computer science, physics, and mathematics, unveiling the incredible potential of quantum computing, which outperforms supercomputers by 158 million times. This technology, rooted in quantum mechanics, offers solutions to global problems and opens new frontiers in AI, cybersecurity, finance, drug development, and more. By engaging with this book, you become a pioneer in the quantum revolution, contributing to reshaping the limits of what's achievable in our digital age.




Quantum Computing


Book Description

Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.




Frontiers of Engineering


Book Description

This volume presents papers on the topics covered at the National Academy of Engineering's 2018 US Frontiers of Engineering Symposium. Every year the symposium brings together 100 outstanding young leaders in engineering to share their cutting-edge research and innovations in selected areas. The 2018 symposium was held September 5-7 and hosted by MIT Lincoln Laboratory in Lexington, Massachusetts. The intent of this book is to convey the excitement of this unique meeting and to highlight innovative developments in engineering research and technical work.




Principles and Applications of Quantum Computing Using Essential Math


Book Description

In the swiftly evolving realm of technology, the challenge of classical computing's constraints in handling intricate problems has become pronounced. While classical computers excel in many areas, they struggle with complex issues in cryptography, optimization, and molecular simulation. Addressing these escalating challenges requires a disruptive solution to push the boundaries of computation and innovation. Principles and Applications of Quantum Computing Using Essential Math, authored by A. Daniel, M. Arvindhan, Kiranmai Bellam, and N. Krishnaraj. This guide pioneers the transformative potential of quantum computing by seamlessly blending rigorous mathematics with quantum theory. It equips scholars, researchers, and aspiring technologists with insights to grasp and harness quantum computing's capabilities. By delving into quantum gates, algorithms, and error correction techniques, the book demystifies quantum computing, inviting exploration of quantum machine learning, cryptography, and the dynamic interplay between classical and quantum computing. As the quantum landscape expands, this book acts as a vital companion, navigating readers through the converging realms of industry, academia, and innovation. Principles and Applications of Quantum Computing Using Essential Math arrives as a timely answer to the limitations of classical computing, providing scholars with an essential roadmap to navigate the quantum technology landscape. With its clear explanations, practical applications, and forward-looking perspectives, this book serves as an indispensable tool for unraveling quantum computing's mysteries and driving innovation into uncharted domains.




Quantum Inspired Computational Intelligence


Book Description

Quantum Inspired Computational Intelligence: Research and Applications explores the latest quantum computational intelligence approaches, initiatives, and applications in computing, engineering, science, and business. The book explores this emerging field of research that applies principles of quantum mechanics to develop more efficient and robust intelligent systems. Conventional computational intelligence—or soft computing—is conjoined with quantum computing to achieve this objective. The models covered can be applied to any endeavor which handles complex and meaningful information. - Brings together quantum computing with computational intelligence to achieve enhanced performance and robust solutions - Includes numerous case studies, tools, and technologies to apply the concepts to real world practice - Provides the missing link between the research and practice




Quantum Information Processing with Diamond


Book Description

Diamond nitrogen vacancy (NV) color centers can transform quantum information science into practical quantum information technology, including fast, safe computing. Quantum Information Processing with Diamond looks at the principles of quantum information science, diamond materials, and their applications. Part one provides an introduction to quantum information processing using diamond, as well as its principles and fabrication techniques. Part two outlines experimental demonstrations of quantum information processing using diamond, and the emerging applications of diamond for quantum information science. It contains chapters on quantum key distribution, quantum microscopy, the hybridization of quantum systems, and building quantum optical devices. Part three outlines promising directions and future trends in diamond technologies for quantum information processing and sensing. Quantum Information Processing with Diamond is a key reference for R&D managers in industrial sectors such as conventional electronics, communication engineering, computer science, biotechnology, quantum optics, quantum mechanics, quantum computing, quantum cryptology, and nanotechnology, as well as academics in physics, chemistry, biology, and engineering. - Brings together the topics of diamond and quantum information processing - Looks at applications such as quantum computing, neural circuits, and in vivo monitoring of processes at the molecular scale







Quantum Computing Since Democritus


Book Description

Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.




Quantum Mechanics


Book Description

Quantum Mechanics: Concepts and Applications provides a clear, balanced and modern introduction to the subject. Written with the student’s background and ability in mind the book takes an innovative approach to quantum mechanics by combining the essential elements of the theory with the practical applications: it is therefore both a textbook and a problem solving book in one self-contained volume. Carefully structured, the book starts with the experimental basis of quantum mechanics and then discusses its mathematical tools. Subsequent chapters cover the formal foundations of the subject, the exact solutions of the Schrödinger equation for one and three dimensional potentials, time-independent and time-dependent approximation methods, and finally, the theory of scattering. The text is richly illustrated throughout with many worked examples and numerous problems with step-by-step solutions designed to help the reader master the machinery of quantum mechanics. The new edition has been completely updated and a solutions manual is available on request. Suitable for senior undergradutate courses and graduate courses.




Introduction to Quantum Computing


Book Description

This book provides a self-contained undergraduate course on quantum computing based on classroom-tested lecture notes. It reviews the fundamentals of quantum mechanics from the double-slit experiment to entanglement, before progressing to the basics of qubits, quantum gates, quantum circuits, quantum key distribution, and some of the famous quantum algorithms. As well as covering quantum gates in depth, it also describes promising platforms for their physical implementation, along with error correction, and topological quantum computing. With quantum computing expanding rapidly in the private sector, understanding quantum computing has never been so important for graduates entering the workplace or PhD programs. Assuming minimal background knowledge, this book is highly accessible, with rigorous step-by-step explanations of the principles behind quantum computation, further reading, and end-of-chapter exercises, ensuring that undergraduate students in physics and engineering emerge well prepared for the future.