Applications of Advanced Optimization Techniques in Industrial Engineering


Book Description

This book provides different approaches used to analyze, draw attention, and provide an understanding of the advancements in the optimization field across the globe. It brings all of the latest methodologies, tools, and techniques related to optimization and industrial engineering into a single volume to build insights towards the latest advancements in various domains. Applications of Advanced Optimization Techniques in Industrial Engineering includes the basic concept of optimization, techniques, and applications related to industrial engineering. Concepts are introduced in a sequential way along with explanations, illustrations, and solved examples. The book goes on to explore applications of operations research and covers empirical properties of a variety of engineering disciplines. It presents network scheduling, production planning, industrial and manufacturing system issues, and their implications in the real world. The book caters to academicians, researchers, professionals in inventory analytics, business analytics, investment managers, finance firms, storage-related managers, and engineers working in engineering industries and data management fields.




Applications of Advanced Optimization Techniques in Industrial Engineering


Book Description

This book provides different approaches used to analyze, draw attention, and provide an understanding of the advancements in the optimization field across the globe. It brings all of the latest methodologies, tools, and techniques related to optimization and industrial engineering into a single volume to build insights towards the latest advancements in various domains. Applications of Advanced Optimization Techniques in Industrial Engineering includes the basic concept of optimization, techniques, and applications related to industrial engineering. Concepts are introduced in a sequential way along with explanations, illustrations, and solved examples. The book goes on to explore applications of operations research and covers empirical properties of a variety of engineering disciplines. It presents network scheduling, production planning, industrial and manufacturing system issues, and their implications in the real world. The book caters to academicians, researchers, professionals in inventory analytics, business analytics, investment managers, finance firms, storage-related managers, and engineers working in engineering industries and data management fields.




Mechanical Design Optimization Using Advanced Optimization Techniques


Book Description

Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational costs. Mechanical Design Optimization Using Advanced Optimization Techniques presents a comprehensive review on latest research and development trends for design optimization of mechanical elements and devices. Using examples of various mechanical elements and devices, the possibilities for design optimization with advanced optimization techniques are demonstrated. Basic and advanced concepts of traditional and advanced optimization techniques are presented, along with real case studies, results of applications of the proposed techniques, and the best optimization strategies to achieve best performance are highlighted. Furthermore, a novel advanced optimization method named teaching-learning-based optimization (TLBO) is presented in this book and this method shows better performance with less computational effort for the large scale problems. Mechanical Design Optimization Using Advanced Optimization Techniques is intended for designers, practitioners, managers, institutes involved in design related projects, applied research workers, academics, and graduate students in mechanical and industrial engineering and will be useful to the industrial product designers for realizing a product as it presents new models and optimization techniques to make tasks easier, logical, efficient and effective. .




Advanced Optimization Applications in Engineering


Book Description

In the ever-evolving landscape of engineering, a pressing challenge looms large—the need to navigate the complexities of modern problems with precision and efficiency. As industries grapple with an array of intricate issues, from sustainable materials to resilient infrastructure, the demand for optimal solutions has never been more pronounced. Traditional approaches are often inadequate, prompting the search for advanced optimization techniques capable of unraveling the intricacies inherent in engineering systems. The problem at hand is clear: how can engineers, researchers, and practitioners harness cutting-edge methodologies to address the multifaceted challenges shaping our technological future? Advanced Optimization Applications in Engineering, is a definitive guide poised to revolutionize problem-solving in civil engineering. This book offers a comprehensive exploration of state-of-the-art optimization algorithms and their transformative applications. By delving into genetic algorithms, particle swarm optimization, neural networks, and other metaheuristic strategies, this collection provides a roadmap for automating design processes, reducing costs, and unlocking innovative solutions. The chapters not only introduce these advanced techniques but also showcase their practical implementation across diverse engineering domains, making this book an indispensable resource for those seeking to stay at the forefront of technological advancements.




Optimization and Control Methods in Industrial Engineering and Construction


Book Description

This book presents recent advances in optimization and control methods with applications to industrial engineering and construction management. It consists of 15 chapters authored by recognized experts in a variety of fields including control and operation research, industrial engineering and project management. Topics include numerical methods in unconstrained optimization, robust optimal control problems, set splitting problems, optimum confidence interval analysis, a monitoring networks optimization survey, distributed fault detection, nonferrous industrial optimization approaches, neural networks in traffic flows, economic scheduling of CCHP systems, a project scheduling optimization survey, lean and agile construction project management, practical construction projects in Hong Kong, dynamic project management, production control in PC4P and target contracts optimization. The book offers a valuable reference work for scientists, engineers, researchers and practitioners in industrial engineering and construction management.




Optimization in Engineering


Book Description

This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering and operations research fields.




Optimization for Engineering Problems


Book Description

Optimization is central to any problem involving decision-making in engineering. Optimization theory and methods deal with selecting the best option regarding the given objective function or performance index. New algorithmic and theoretical techniques have been developed for this purpose, and have rapidly diffused into other disciplines. As a result, our knowledge of all aspects of the field has grown even more profound. In Optimization for Engineering Problems, eminent researchers in the field present the latest knowledge and techniques on the subject of optimization in engineering. Whereas the majority of work in this area focuses on other applications, this book applies advanced and algorithm-based optimization techniques specifically to problems in engineering.




Advanced Optimization and Decision-Making Techniques in Textile Manufacturing


Book Description

Optimization and decision making are integral parts of any manufacturing process and management system. The objective of this book is to demonstrate the confluence of theory and applications of various types of multi-criteria decision making and optimization techniques with reference to textile manufacturing and management. Divided into twelve chapters, it discusses various multi-criteria decision-making methods such as AHP, TOPSIS, ELECTRE, and optimization techniques like linear programming, fuzzy linear programming, quadratic programming, in textile domain. Multi-objective optimization problems have been dealt with two approaches, namely desirability function and evolutionary algorithm. Key Features Exclusive title covering textiles and soft computing fields including optimization and decision making Discusses concepts of traditional and non-traditional optimization methods with textile examples Explores pertinent single-objective and multi-objective optimizations Provides MATLAB coding in the Appendix to solve various types of multi-criteria decision making and optimization problems Includes examples and case studies related to textile engineering and management




Jaya: An Advanced Optimization Algorithm and its Engineering Applications


Book Description

This book introduces readers to the “Jaya” algorithm, an advanced optimization technique that can be applied to many physical and engineering systems. It describes the algorithm, discusses its differences with other advanced optimization techniques, and examines the applications of versions of the algorithm in mechanical, thermal, manufacturing, electrical, computer, civil and structural engineering. In real complex optimization problems, the number of parameters to be optimized can be very large and their influence on the goal function can be very complicated and nonlinear in character. Such problems cannot be solved using classical methods and advanced optimization methods need to be applied. The Jaya algorithm is an algorithm-specific parameter-less algorithm that builds on other advanced optimization techniques. The application of Jaya in several engineering disciplines is critically assessed and its success compared with other complex optimization techniques such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), and other recently developed algorithms.




Application of Advanced Optimization Techniques for Healthcare Analytics


Book Description

Application of Advanced Optimization Techniques for Healthcare Analytics, 1st Edition, is an excellent compilation of current and advanced optimization techniques which can readily be applied to solve different hospital management problems. The healthcare system is currently a topic of significant investigation to make life easier for those who are disabled, old, or sick, as well as for young children. The emphasis of the healthcare system has evolved throughout time due to several emerging beneficial technologies, such as personal digital assistants (PDAs), data mining, the internet of things, metaheuristics, fog computing, and cloud computing. Metaheuristics are strong technology for tackling several optimization problems in various fields, especially healthcare systems. The primary advantage of metaheuristic algorithms is their ability to find a better solution to a healthcare problem and their ability to consume as little time as possible. In addition, metaheuristics are more flexible compared to several other optimization techniques. These algorithms are not related to a specific optimization problem but could be applied to any optimization problem by making some small adaptations to become suitable to tackle it. The successful outcome of this book will enable a decision-maker or practitioner to pick a suitable optimization approach when making decisions to schedule patients under crowding environments with minimized human errors.