Computational Techniques for Chemical Engineers


Book Description

Computational Techniques for Chemical Engineers offers a practical guide to the chemical engineer faced with a problem of computing. The computer is a servant not a master, its value depends on the instructions it is given. This book aims to help the chemical engineer in the right choice of these instructions. The text begins by outlining the principles of operation of digital and analogue computers and then discussing the difficulties which arise in formulating a problem for solution on such a machine. This is followed by separate chapters on digital computers and their programming; the use of digital computers in chemical engineering design work; optimization techniques and their application in the selection of optimum designs; the solution of sets of non-linear algebraic equations via hill-climbing; and determination of equilibrium compositions by minimization of Gibbs free energy. Subsequent chapters discuss the solution of partial or simultaneous differential equations; parameter estimation in differential equations; continuous systems; and analogue computers.













Scientific Computing in Chemical Engineering II


Book Description

The application of modern methods in numerical mathematics on problems in chemical engineering is essential for designing, analyzing and running chemical processes and even entire plants. Scientific Computing in Chemical Engineering II gives the state of the art from the point of view of numerical mathematicians as well as that of engineers. The present volume as part of a two-volume edition covers topics such as computer-aided process design, combustion and flame, image processing, optimization, control, and neural networks. The volume is aimed at scientists, practitioners and graduate students in chemical engineering, industrial engineering and numerical mathematics.










Scientific Computing in Chemical Engineering


Book Description

Scientific Computing in Chemical Engineering gives the state of the art from the point of view of the numerical mathematicians as well as from the engineers. The application of modern methods in numerical mathematics on problems in chemical engineering, especially reactor modeling, process simulation, process optimization and the use of parallel computing is detailed.