Applications of Combinatorial Optimization, Volume 3


Book Description

Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aims to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. “Applications of Combinatorial Optimization” is presenting a certain number among the most common and well-known applications of Combinatorial Optimization.




Combinatorial Optimization


Book Description

This well-written textbook on combinatorial optimization puts special emphasis on theoretical results and algorithms with provably good performance, in contrast to heuristics. The book contains complete (but concise) proofs, as well as many deep results, some of which have not appeared in any previous books.




Combinatorial Optimization


Book Description

This graduate-level text considers the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; local search heuristics for NP-complete problems, more. 1982 edition.




Combinatorial Optimization for Undergraduates


Book Description

The major purpose of this book is to introduce the main concepts of discrete optimization problems which have a finite number of feasible solutions. Following common practice, we term this topic combinatorial optimization. There are now a number of excellent graduate-level textbooks on combina torial optimization. However, there does not seem to exist an undergraduate text in this area. This book is designed to fill this need. The book is intended for undergraduates in mathematics, engineering, business, or the physical or social sciences. It may also be useful as a reference text for practising engineers and scientists. The writing of this book was inspired through the experience of the author in teaching the material to undergraduate students in operations research, engineering, business, and mathematics at the University of Canterbury, New Zealand. This experience has confirmed the suspicion that it is often wise to adopt the following approach when teaching material of the nature contained in this book. When introducing a new topic, begin with a numerical problem which the students can readily understand; develop a solution technique by using it on this problem; then go on to general problems. This philosophy has been adopted throughout the book. The emphasis is on plausibility and clarity rather than rigor, although rigorous arguments have been used when they contribute to the understanding of the mechanics of an algorithm.




Geometric Algorithms and Combinatorial Optimization


Book Description

Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.




Connections in Combinatorial Optimization


Book Description

Filling the gap between introductory and encyclopedic treatments, this book provides rich and appealing material for a second course in combinatorial optimization. This book is suitable for graduate students as well as a reference for established researchers.




Handbook of Combinatorial Optimization


Book Description

This is a supplementary volume to the major three-volume Handbook of Combinatorial Optimization set. It can also be regarded as a stand-alone volume presenting chapters dealing with various aspects of the subject in a self-contained way.




Combinatorial, Linear, Integer and Nonlinear Optimization Apps


Book Description

This textbook provides an introduction to the use and understanding of optimization and modeling for upper-level undergraduate students in engineering and mathematics. The formulation of optimization problems is founded through concepts and techniques from operations research: Combinatorial Optimization, Linear Programming, and Integer and Nonlinear Programming (COLIN). Computer Science (CS) is also relevant and important given the applications of algorithms and Apps/algorithms (A) in solving optimization problems. Each chapter provides an overview of the main concepts of optimization according to COLINA, providing examples through App Inventor and AMPL software applications. All apps developed through the text are available for download. Additionally, the text includes links to the University of Wisconsin NEOS server, designed to handle more computing-intensive problems in complex optimization. Readers are encouraged to have some background in calculus, linear algebra, and related mathematics.




Computational Combinatorial Optimization


Book Description

This tutorial contains written versions of seven lectures on Computational Combinatorial Optimization given by leading members of the optimization community. The lectures introduce modern combinatorial optimization techniques, with an emphasis on branch and cut algorithms and Lagrangian relaxation approaches. Polyhedral combinatorics as the mathematical backbone of successful algorithms are covered from many perspectives, in particular, polyhedral projection and lifting techniques and the importance of modeling are extensively discussed. Applications to prominent combinatorial optimization problems, e.g., in production and transport planning, are treated in many places; in particular, the book contains a state-of-the-art account of the most successful techniques for solving the traveling salesman problem to optimality.




Graph Theory and Combinatorial Optimization


Book Description

Graph theory is very much tied to the geometric properties of optimization and combinatorial optimization. Moreover, graph theory's geometric properties are at the core of many research interests in operations research and applied mathematics. Its techniques have been used in solving many classical problems including maximum flow problems, independent set problems, and the traveling salesman problem. Graph Theory and Combinatorial Optimization explores the field's classical foundations and its developing theories, ideas and applications to new problems. The book examines the geometric properties of graph theory and its widening uses in combinatorial optimization theory and application. The field's leading researchers have contributed chapters in their areas of expertise.