Applications of Finite Groups


Book Description

Applications of Finite Groups focuses on the applications of finite groups to problems of physics, including representation theory, crystals, wave equations, and nuclear and molecular structures. The book first elaborates on matrices, groups, and representations. Topics include abstract properties, applications, matrix groups, key theorem of representation theory, properties of character tables, simply reducible groups, tensors and invariants, and representations generated by functions. The text then examines applications and subgroups and representations, as well as subduced and induced representations, fermion annihilation and creation operators, crystallographic point groups, proportionality tensors in crystals, and nonrelativistic wave equations. The publication takes a look at space group representations and energy bands, symmetric groups, and applications. Topics include molecular and nuclear structures, multiplet splitting in crystalline electric fields, construction of irreducible representations of the symmetric groups, and reality of representations. The manuscript is a dependable source of data for physicists and researchers interested in the applications of finite groups.




Graphs on Surfaces and Their Applications


Book Description

Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.




Fourier Analysis on Finite Groups and Applications


Book Description

It examines the theory of finite groups in a manner that is both accessible to the beginner and suitable for graduate research.




Representation Theory of Finite Groups


Book Description

Representation Theory of Finite Groups is a five chapter text that covers the standard material of representation theory. This book starts with an overview of the basic concepts of the subject, including group characters, representation modules, and the rectangular representation. The succeeding chapters describe the features of representation theory of rings with identity and finite groups. These topics are followed by a discussion of some of the application of the theory of characters, along with some classical theorems. The last chapter deals with the construction of irreducible representations of groups. This book will be of great value to graduate students who wish to acquire some knowledge of representation theory.




Finite Group Theory


Book Description

The text begins with a review of group actions and Sylow theory. It includes semidirect products, the Schur–Zassenhaus theorem, the theory of commutators, coprime actions on groups, transfer theory, Frobenius groups, primitive and multiply transitive permutation groups, the simplicity of the PSL groups, the generalized Fitting subgroup and also Thompson's J-subgroup and his normal $p$-complement theorem. Topics that seldom (or never) appear in books are also covered. These include subnormality theory, a group-theoretic proof of Burnside's theorem about groups with order divisible by just two primes, the Wielandt automorphism tower theorem, Yoshida's transfer theorem, the “principal ideal theorem” of transfer theory and many smaller results that are not very well known. Proofs often contain original ideas, and they are given in complete detail. In many cases they are simpler than can be found elsewhere. The book is largely based on the author's lectures, and consequently, the style is friendly and somewhat informal. Finally, the book includes a large collection of problems at disparate levels of difficulty. These should enable students to practice group theory and not just read about it. Martin Isaacs is professor of mathematics at the University of Wisconsin, Madison. Over the years, he has received many teaching awards and is well known for his inspiring teaching and lecturing. He received the University of Wisconsin Distinguished Teaching Award in 1985, the Benjamin Smith Reynolds Teaching Award in 1989, and the Wisconsin Section MAA Teaching Award in 1993, to name only a few. He was also honored by being the selected MAA Pólya Lecturer in 2003–2005.




Representation Theory of Finite Groups


Book Description

This book is intended to present group representation theory at a level accessible to mature undergraduate students and beginning graduate students. This is achieved by mainly keeping the required background to the level of undergraduate linear algebra, group theory and very basic ring theory. Module theory and Wedderburn theory, as well as tensor products, are deliberately avoided. Instead, we take an approach based on discrete Fourier Analysis. Applications to the spectral theory of graphs are given to help the student appreciate the usefulness of the subject. A number of exercises are included. This book is intended for a 3rd/4th undergraduate course or an introductory graduate course on group representation theory. However, it can also be used as a reference for workers in all areas of mathematics and statistics.




Classes of Finite Groups


Book Description

This book covers the latest achievements of the Theory of Classes of Finite Groups. It introduces some unpublished and fundamental advances in this Theory and provides a new insight into some classic facts in this area. By gathering the research of many authors scattered in hundreds of papers the book contributes to the understanding of the structure of finite groups by adapting and extending the successful techniques of the Theory of Finite Soluble Groups.




The Character Theory of Finite Groups of Lie Type


Book Description

Through the fundamental work of Deligne and Lusztig in the 1970s, further developed mainly by Lusztig, the character theory of reductive groups over finite fields has grown into a rich and vast area of mathematics. It incorporates tools and methods from algebraic geometry, topology, combinatorics and computer algebra, and has since evolved substantially. With this book, the authors meet the need for a contemporary treatment, complementing in core areas the well-established books of Carter and Digne–Michel. Focusing on applications in finite group theory, the authors gather previously scattered results and allow the reader to get to grips with the large body of literature available on the subject, covering topics such as regular embeddings, the Jordan decomposition of characters, d-Harish–Chandra theory and Lusztig induction for unipotent characters. Requiring only a modest background in algebraic geometry, this useful reference is suitable for beginning graduate students as well as researchers.







A Course in Finite Group Representation Theory


Book Description

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.