Applications of MALDI-TOF Spectroscopy


Book Description

MALDI-ToF Mass Spectrometry for Studying Noncovalent Complexes of Biomolecules, by Stefanie Mädler, Elisabetta Boeri Erba, Renato Zenobi Application of MALDI-TOF-Mass Spectrometry to Proteome Analysis Using Stain-Free Gel Electrophoresis, by Iuliana Susnea, Bogdan Bernevic, Michael Wicke, Li Ma, Shuying Liu, Karl Schellander, Michael Przybylski MALDI Mass Spectrometry for Nucleic Acid Analysis, by Xiang Gao, Boon-Huan Tan, Richard J. Sugrue, Kai Tang Determination of Peptide and Protein Disulfide Linkages by MALDI Mass Spectrometry, by Hongmei Yang, Ning Liu, Shuying Liu MALDI In-Source Decay, from Sequencing to Imaging, by Delphine Debois, Nicolas Smargiasso, Kevin Demeure, Daiki Asakawa, Tyler A. Zimmerman, Loïc Quinton, Edwin De Pauw Advances of MALDI-TOF MS in the Analysis of Traditional Chinese Medicines, by Minghua Lu, Zongwei Cai Chemical and Biochemical Applications of MALDI TOF-MS Based on Analyzing the Small Organic Compounds, by Haoyang Wang, Zhixiong Zhao, Yinlong Guo Bioinformatic Analysis of Data Generated from MALDI Mass Spectrometry for Biomarker Discovery, by Zengyou He, Robert Z. Qi, Weichuan Yu




The Use of Mass Spectrometry Technology (MALDI-TOF) in Clinical Microbiology


Book Description

The Use of Mass Spectrometry Technology (MALDI-TOF) in Clinical Microbiology presents the state-of the-art for MALDI-TOF mass spectrometry. It is a key reference defining how MALDI-TOF mass spectrometry is used in clinical settings as a diagnostic tool of microbial identification and characterization that is based on the detection of a mass of molecules. The book provides updated applications of MALDI-TOF techniques in clinical microbiology, presenting the latest information available on a technology that is now used for rapid microbial identification at relatively low cost, thus offering an alternative to conventional laboratory diagnosis and proteomic identification systems. Although the main use of the technology has, until now, been identification or typing of bacteria from a positive culture, applications in the field of virology, mycology, microbacteriology and resistances are opening up new opportunities. - Presents updated applications of MALDI-TOF techniques in clinical microbiology - Describes the use of mass spectrometry in the lab, the principles of the technology, preparation of samples, device calibration and maintenance, treatment of microorganisms, and quality control - Presents key information for researchers, including possible uses of the technology, differences between devices, how to interpret results, and future applications - Covers the topic in a systematic and comprehensive manner that is useful to both clinicians and researchers




Fundamentals of MALDI-ToF-MS Analysis


Book Description

This book presents the fundamentals and applications of Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-ToF-MS) technique. It highlights the basic principles, the history of invention as well as the mechanism of ionization and mass determination using this technique. It describes the fundamental principles and methods for MALDI spectra interpretation and determination of exact chemical structures from experimental data. This book guides the reader through the interpretation of MALDI data where complex macromolecular spectra are simplified in order to present the major principles behind data interpretation. In addition, each chapter describes how MALDI-ToF-MS analysis provides necessary understanding of the copolymer systems that have been designed for specialized biomedical applications.




Applications of Mass Spectrometry in Microbiology


Book Description

In the last quarter century, advances in mass spectrometry (MS) have been at the forefront of efforts to map complex biological systems including the human metabolome, proteome, and microbiome. All of these developments have allowed MS to become a well-established molecular level technology for microorganism characterization. MS has demonstrated its considerable advantage as a rapid, accurate, and cost-effective method for microorganism identification, compared to conventional phenotypic techniques. In the last several years, applications of MS for microorganism characterization in research, clinical microbiology, counter-bioterrorism, food safety, and environmental monitoring have been documented in thousands of publications. Regulatory bodies in Europe, the US, and elsewhere have approved MS-based assays for infectious disease diagnostics. As of mid-2015, more than 3300 commercial MS systems for microorganism identification have been deployed worldwide in hospitals and clinical labs. While previous work has covered broader approaches in using MS to characterize microorganisms at the species level or above, this book focuses on strain-level and subtyping applications. In twelve individual chapters, innovators, leaders and practitioners in the field from around the world have contributed to a comprehensive overview of current and next-generation approaches for MS-based microbial characterization at the subspecies and strain levels. Chapters include up-to-date reference lists as well as web-links to databases, recommended software, and other useful tools. The emergence of new, antibiotic-resistant strains of human or animal pathogens is of extraordinary concern not only to the scientific and medical communities, but to the general public as well. Developments of novel MS-based assays for rapid identification of strains of antibiotic-resistant microorganisms are reviewed in the book as well. Microbiologists, bioanalytical scientists, infectious disease specialists, clinical laboratory and public health practitioners as well as researchers in universities, hospitals, government labs, and the pharmaceutical and biotechnology industries will find this book to be a timely and valuable resource.




MALDI-TOF and Tandem MS for Clinical Microbiology


Book Description

This book highlights the triumph of MALDI-TOF mass spectrometry over the past decade and provides insight into new and expanding technologies through a comprehensive range of short chapters that enable the reader to gauge their current status and how they may progress over the next decade. This book serves as a platform to consolidate current strengths of the technology and highlight new frontiers in tandem MS/MS that are likely to eventually supersede MALDI-TOF MS. Chapters discuss: Challenges of Identifying Mycobacterium to the Species level Identification of Bacteroides and Other Clinically Relevant Anaerobes Identification of Species in Mixed Microbial Populations Detection of Resistance Mechanisms Proteomics as a biomarker discovery and validation platform Determination of Antimicrobial Resistance using Tandem Mass Spectrometry




MALDI-TOF Mass Spectrometry of Synthetic Polymers


Book Description

MALDI-TOF mass spectrometry is one of the latest and most fascinating new developments in the analysis of organic compounds. Originally developed for the analysis of biomolecules, it has developed into one of the most powerful techniques for the characterization of synthetic polymers. This book describes the fundamentals of the MALDI process and the technical features of MALDI-TOF instrumentation. It reviews the application of MALDI-TOF for identification, chemical and molar mass analysis of synthetic polymers. With many examples, the monograph examines experimental protocols for the determination of endgroups, the analysis of copolymers and additives, and the coupling of liquid chromatography and MALDI-TOF in detail.




MALDI MS


Book Description

This authoritative book on MALDI MS, now finally available in its second edition and edited by one of its inventors, gives an in-depth description of the many different applications, along with a detailed discussion of the technology itself. Thoroughly updated and expanded, with contributions from key players in the field, this unique book provides a comprehensive overview of MALDI MS along with its possibilities and limitations. The initial chapters deal with the technology and the instrumental setup, followed by chapters on the use of MALDI MS in protein research (including proteomics), genomics, glycomics and lipidomics. The option of MALDI-MS for the analysis of polymers and small molecules are also covered in separate chapters, while new to this edition is a section devoted to the interplay of MALDI MS and bioinformatics. A much-needed practical and educational asset for individuals, academic institutions and companies in the field of bioanalytics.




Lipids in Health and Disease


Book Description

Lipids are functionally versatile molecules. They have evolved from relatively simple hydrocarbons that serve as depot storages of metabolites and barriers to the permeation of solutes into complex compounds that perform a variety of signalling functions in higher organisms. This volume is devoted to the polar lipids and their constituents. We have omitted the neutral lipids like fats and oils because their function is generally to act as deposits of metabolizable substrates. The sterols are also outside the scope of the present volume and the reader is referred to volume 28 of this series which is the subject of cholesterol. The polar lipids are comprised of fatty acids attached to either glycerol or sphingosine. The fatty acids themselves constitute an important reservoir of substrates for conversion into families of signalling and modulating molecules including the eicosanoids amongst which are the prostaglandins, thromboxanes and leucotrienes. The way fatty acid metabolism is regulated in the liver and how fatty acids are desaturated are subjects considered in the first part of this volume. This section also deals with the modulation of protein function and inflammation by unsaturated fatty acids and their derivatives. New insights into the role of fatty acid synthesis and eicosenoid function in tumour progression and metastasis are presented.




Mass Spectrometry


Book Description

The latest edition of a highly successful textbook, Mass Spectrometry, Third Edition provides students with a complete overview of the principles, theories and key applications of modern mass spectrometry. All instrumental aspects of mass spectrometry are clearly and concisely described: sources, analysers and detectors. Tandem mass spectrometry is introduced early on and then developed in more detail in a later chapter. Emphasis is placed throughout the text on optimal utilisation conditions. Various fragmentation patterns are described together with analytical information that derives from the mass spectra. This new edition has been thoroughly revised and updated and has been redesigned to give the book a more contemporary look. As with previous editions it contains numerous examples, references and a series of exercises of increasing difficulty to encourage student understanding. Updates include: Increased coverage of MALDI and ESI, more detailed description of time of flight spectrometers, new material on isotope ratio mass spectrometry, and an expanded range of applications. Mass Spectrometry, Third Edition is an invaluable resource for all undergraduate and postgraduate students using this technique in departments of chemistry, biochemistry, medicine, pharmacology, agriculture, material science and food science. It is also of interest for researchers looking for an overview of the latest techniques and developments.




Applications of MALDI-TOF Mass Spectrometry in Clinical Diagnostic Microbiology


Book Description

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) represents one of the most accurate, reliable, and fast methods for the identification of bacterial strains from positive cultures, and therefore it has largely replaced all other previously used approaches for microbial identification. The main application of MALDI-TOF MS in clinical microbiology laboratories is the identification of bacteria from colonies recovered from solid culture media. This chapter discusses specific identification procedures that are needed for some bacteria, such as Actinomycetes and Mycobacteria. The performance of MALDI-TOF MS identification relies on the number of mass spectra that reach the quality allowing identification and the number of correct identifications. MALDI-TOF MS has also been proposed for Staphylococcus aureus strain typing or for the detection of biomarkers of the most virulent toxigenic isolates. MALDI-TOF MS could also be used for Mycobacterium.