Applications of Nanomaterials in Energy Storage and Electronics


Book Description

This volume describes recent advancements in the synthesis and applications of nanomaterials for energy harvesting and storage, and optoelectronics technology for next-generation devices. This book consists of 15 chapters that cover a range of nanomaterials and the corresponding technologies. The initial chapters summarize the recent progress in applications of nanomaterials like carbon nanotubes, metal oxides, and graphene oxides-based hybrids in solar energy harvesting using recent photovoltaic technologies. These chapters are followed by reviews on nanowires, graphene quantum dots, boron nitrides, carbon nano onions and metal organic frameworks leading to the fabrication of supercapacitors, bio-sensors, lithium-ion batteries and hydrogen storage applications. The final set of chapters cover the next generation fuel cells using polymer nanocomposites, ferroelectric liquid crystal nanocomposite and optoelectronic nanomaterials for optical memory and displays devices. Key Features: Describes the types of nanomaterials that are fundamental to energy storage and electronic systems. These materials include nanowires, graphene quantum dots, boron nitrides, carbon nano onions and metal organic frameworks (MOFs), Covers the processes for nanomaterial synthesis Reviews important photovoltaics applications of nanomaterials, including their use in energy storage, batteries and optoelectronic devices Discusses the application of nanomaterials in electronics for sensing, bioelectronics, memory, nanocomposites for fuel cells, ferroelectric liquid crystal nanocomposites and optoelectronic nanomaterials for optical memory and displays Provides references for further reading in every chapter The volume informs engineers, academic researchers, research scholars and graduate students working in the area of nanomaterials for energy generation, storage and optoelectronics.




Nanomaterials For Energy Conversion And Storage


Book Description

The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities.Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy.




Nanotechnology Applications in Green Energy Systems


Book Description

"This book will be beneficial for students, researchers and scientists working in the field of green energy systems. In the last few decades, green energy technologies have gained significant interest. The increase of heat transfer in green energy technologies is one of the most important concerns in energy collection, energy storage, energy utilization, energy conservation, and optimum design. Since nanofluids/nano-enhanced phase change materials are used to increase heat transfer characteristics and thermal properties compared to conventional fluids/phase change materials, the performance of green energy technologies can be improved. These novel strategies are gaining interest to researchers and authors in recent years. This book presents the various applications of nanofluids, hybrid nanofluids, and nano-enhanced phase change materials in green energy technologies such as solar thermal energy storage, photovoltaic/thermal systems, tracking and non-tracking solar collectors, solar thermal power plant, and wind turbine cooling systems. The thermophysical properties of the nanofluids and nano-enhanced phase change materials are also presented. This book also overviews the challenges and opportunities in implementing the nanofluids/nano-enhanced phase change materials application in green energy technologies"--




Semiconductor Nanomaterials for Flexible Technologies


Book Description

This book is an overview of the strategies to generate high-quality films of one-dimensional semiconductor nanostructures on flexible substrates (e.g., plastics) and the use of them as building blocks to fabricating flexible devices (including electronics, optoelectronics, sensors, power systems). In addition to engineering aspects, the physics and chemistry behind the fabrication and device operation will also be discussed as well. Internationally recognized scientists from academia, national laboratories, and industries, who are the leading researchers in the emerging areas, are contributing exceptional chapters according to their cutting-edge research results and expertise. This book will be an on-time addition to the literature in nanoscience and engineering. It will be suitable for graduate students and researchers as a useful reference to stimulate their research interest as well as facilitate their research in nanoscience and engineering. - Considers the physics and chemistry behind fabrication and device operation - Discusses applications to electronics, optoelectronics, sensors and power systems - Examines existing technologies and investigates emerging trends




Energy Applications of 2D Nanomaterials


Book Description

2D nanomaterials have emerged as promising candidates for use in energy devices owing to their superior electrochemical properties, surface area, nanodevice integration, multifunctionality, printability, and mechanical flexibility. Energy Applications of 2D Nanomaterials covers a wide range of applications of 2D nanomaterials for energy, as well as future applications and challenges in fabricating flexible energy generation and storage devices. This book: Examines 2D nanomaterials for solar cells, fuel cells, batteries, supercapacitors, and flexible devices Details novel methods and advanced technologies Covers future applications and challenges This book is aimed at materials scientists, chemists, electrochemists, and engineers working in energy disciplines.




Advanced Energy and Control Systems


Book Description

This book gathers selected research papers presented at the Third International Conference on Energy Systems, Drives, and Automations (ESDA 2020). It covers a broad range of topics in the fields of renewable energy, power management, drive systems for electrical machines, and automation. In a spam of about a few interesting articles, effort had gone in to critically discuss about the control system, energy management and distribution in a unified approach common to electrical, Control and mechanical engineering. This book also comprehensively discusses a variety of related tools and techniques and will be a valuable resource for researchers, professionals, and students in electrical and mechanical engineering disciplines.




Emerging Materials for Energy Conversion and Storage


Book Description

Emerging Materials for Energy Conversion and Storage presents the state-of-art of emerging materials for energy conversion technologies (solar cells and fuel cells) and energy storage technologies (batteries, supercapacitors and hydrogen storage). The book is organized into five primary sections, each with three chapters authored by worldwide experts in the fields of materials science, physics, chemistry and engineering. It covers the fundamentals, functionalities, challenges and prospects of different classes of emerging materials, such as wide bandgap semiconductors, oxides, carbon-based nanostructures, advanced ceramics, chalcogenide nanostructures, and flexible organic electronics nanomaterials. The book is an important reference for students and researchers (from academics, but also industry) interested in understanding the properties of emerging materials. - Explores the fundamentals, challenges and prospects for the application of emerging materials in the development of energy conversion and storage devices - Presents a discussion of solar cell and photovoltaic, fuel cell, battery electrode, supercapacitor and hydrogen storage applications - Includes notable examples of energy devices based on emerging materials to illustrate recent advances in this field




MAX Phases


Book Description

In this comprehensive yet compact monograph, Michel W. Barsoum, one of the pioneers in the field and the leading figure in MAX phase research, summarizes and explains, from both an experimental and a theoretical viewpoint, all the features that are necessary to understand and apply these new materials. The book covers elastic, electrical, thermal, chemical and mechanical properties in different temperature regimes. By bringing together, in a unifi ed, self-contained manner, all the information on MAX phases hitherto only found scattered in the journal literature, this one-stop resource offers researchers and developers alike an insight into these fascinating materials.




Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems


Book Description

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics.




Handbook of Polymer and Ceramic Nanotechnology


Book Description

This handbook examines the recent advances in the nanotechnology of polymers and ceramics, which possess outstanding mechanical properties and compatibility given their unique physical and chemical properties caused by the unusually large surface area to volume ratios and high interfacial reactivity. This handbook highlights the various compositions and morphologies of polymer and ceramic nanomaterials that can serve as powerful tools for the diverse applications in areas such as electronics, photonics, shape-memory alloys, biomaterials and biomedical nanomaterials, graphene-based technologies, and textiles and packaging. The handbook addresses safety, economics, green production and sustainability. The book contains a section on functionalization of these molecules, which only increases the possibility of developing even more versatile materials that can be fine-tuned for specific applications. Filling a gap in the literature, this handbook provides comprehensive coverage of properties, fabrication, characterization, functionalization methods and applications at both experimental and theoretical models scales. Economic, toxicological, regulatory, and environmental concerns regarding applications are also discussed in detail. Special attention is paid to sustainable approaches that reduce costs in terms of chemicals and time consumption. The book covers research trends, challenges, and prospective topics as well.