Applications of neutrosophic cubic sets in multi-criteria decision making


Book Description

In this paper, we investigate the concepts of the weighted average operator (AW) and weighted geometric operator (GW) on neutrosophic cubic sets (NCSs) to aggregate the neutrosophic cubic information.







Possibility Neutrosophic Cubic Sets and Their Application to Multiple Attribute Decision Making


Book Description

The neutrosophic cubic sets are an extension of the neutrosophic sets on the cubic sets. It contains three variables, which respectively represent the membership degree, non-membership degree and uncertainty of the element to the set. The score function is an important indicator in the multi-attribute decision-making problem. In this paper, we consider the possibility that an element belongs to a set and put forward the definition of possibility neutrosophic cubic sets. On this basis, we introduce some related concepts and give the binary operation of possibility neutrosophic cubic sets and use specific examples to supplement the corresponding definition. Meanwhile, a decision-making method based on the score function of possibility neutrosophic cubic sets is proposed and a numerical example is given to illustrate the effectiveness of the proposed method.







NC-VIKOR Based MAGDM Strategy under Neutrosophic Cubic Set Environment


Book Description

Neutrosophic cubic set consists of interval neutrosophic set and single valued neutrosophic set simultaneously. Due to its unique structure, neutrosophic cubic set can express hybrid information consisting of single valued neutrosophic information and interval neutrosophic information simultaneously.




Neutrosophic Cubic Einstein Geometric Aggregation Operators with Application to Multi-Criteria Decision Making Method


Book Description

In this paper we defined the algebraic and Einstein sum, multiplication and scalar multiplication, score and accuracy functions. Using these operations we defined geometric aggregation operators and Einstein geometric aggregation operators. First, we defined the algebraic and Einstein operators of addition, multiplication and scalar multiplication. We defined score and accuracy function to compare neutrosophic cubic values.




Neutrosophic Information Theory and Applications


Book Description

The concept of Information is to disseminate scientific results achieved via experiments and theoretical results in depth. It is very important to enable researchers and practitioners to learn new technology and findings that enable development in the applied field.




Multiple Attribute Decision-Making Method Using Similarity Measures of Neutrosophic Cubic Sets


Book Description

In inconsistent and indeterminate settings, as a usual tool, the neutrosophic cubic set (NCS) containing single-valued neutrosophic numbers and interval neutrosophic numbers can be applied in decision-making to present its partial indeterminate and partial determinate information.




Collected Papers. Volume XIV


Book Description

This fourteenth volume of Collected Papers is an eclectic tome of 87 papers in Neutrosophics and other fields, such as mathematics, fuzzy sets, intuitionistic fuzzy sets, picture fuzzy sets, information fusion, robotics, statistics, or extenics, comprising 936 pages, published between 2008-2022 in different scientific journals or currently in press, by the author alone or in collaboration with the following 99 co-authors (alphabetically ordered) from 26 countries: Ahmed B. Al-Nafee, Adesina Abdul Akeem Agboola, Akbar Rezaei, Shariful Alam, Marina Alonso, Fran Andujar, Toshinori Asai, Assia Bakali, Azmat Hussain, Daniela Baran, Bijan Davvaz, Bilal Hadjadji, Carlos Díaz Bohorquez, Robert N. Boyd, M. Caldas, Cenap Özel, Pankaj Chauhan, Victor Christianto, Salvador Coll, Shyamal Dalapati, Irfan Deli, Balasubramanian Elavarasan, Fahad Alsharari, Yonfei Feng, Daniela Gîfu, Rafael Rojas Gualdrón, Haipeng Wang, Hemant Kumar Gianey, Noel Batista Hernández, Abdel-Nasser Hussein, Ibrahim M. Hezam, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Muthusamy Karthika, Nour Eldeen M. Khalifa, Madad Khan, Kifayat Ullah, Valeri Kroumov, Tapan Kumar Roy, Deepesh Kunwar, Le Thi Nhung, Pedro López, Mai Mohamed, Manh Van Vu, Miguel A. Quiroz-Martínez, Marcel Migdalovici, Kritika Mishra, Mohamed Abdel-Basset, Mohamed Talea, Mohammad Hamidi, Mohammed Alshumrani, Mohamed Loey, Muhammad Akram, Muhammad Shabir, Mumtaz Ali, Nassim Abbas, Munazza Naz, Ngan Thi Roan, Nguyen Xuan Thao, Rishwanth Mani Parimala, Ion Pătrașcu, Surapati Pramanik, Quek Shio Gai, Qiang Guo, Rajab Ali Borzooei, Nimitha Rajesh, Jesús Estupiñan Ricardo, Juan Miguel Martínez Rubio, Saeed Mirvakili, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, Ahmed A. Salama, Nirmala Sawan, Gheorghe Săvoiu, Ganeshsree Selvachandran, Seok-Zun Song, Shahzaib Ashraf, Jayant Singh, Rajesh Singh, Son Hoang Le, Tahir Mahmood, Kenta Takaya, Mirela Teodorescu, Ramalingam Udhayakumar, Maikel Y. Leyva Vázquez, V. Venkateswara Rao, Luige Vlădăreanu, Victor Vlădăreanu, Gabriela Vlădeanu, Michael Voskoglou, Yaser Saber, Yong Deng, You He, Youcef Chibani, Young Bae Jun, Wadei F. Al-Omeri, Hongbo Wang, Zayen Azzouz Omar.




Research on Novel Correlation Coefficient of Neutrosophic Cubic Sets and Its Applications


Book Description

Single-valued neutrosophic cubic set is a good tool to solve the vague and uncertain problems because it containsmore information. The article first gives the correlation coefficient of single-valued neutrosophic cubic sets. Then, a decision method is proposed, and an application in pattern recognition is considered. Finally, examples are given to explain the feasibility of thismethod. At the same time, the comparative analysis shows the superiority of this method.