Applications of Photonic Technology 2


Book Description

This book presents a current review ofphotonic technologies and their applications. The papers published in this book are extended versions of the papers presented at the Inter national Conference on Applications ofPhotonic Technology (ICAPT'96) held in Montreal, Canada, on July 29 to August 1, 1996. The theme of this event was "Closing the Gap Between Theory, Developments and Applications. " The term photonics covers both optics and optical engineering areas of growing sci entific and commercial importance throughout the world. It is estimated that photonic tech nology-related applications to increase exponentially over the next few years and will play a significant role in the global economy by reaching a quarter of a trillion of US dollars by the year 2000. The global interest and advancements of this technology are represented in this book, where leading scientists of twenty-two countries with advanced technology in photon ics present their latest results. The papers selected herein are grouped to address six distinct areas ofphotonic tech nology. The reader will find throughout the book a combination of invited and contributed papers which reflect the state of the art today and provide some insight about the future of this technology. The first two papers are invited. They discuss business aspects ofphotonic engineer ing. One examines if chip-to-chip interconnections by means of optical technology are a good economic choice, while the other discusses the photonic technology from entre preneurial viewpoint. Papers related to materials and considered for photonic applications, e. g.




Optics and Photonics


Book Description

Optics and photonics technologies are ubiquitous: they are responsible for the displays on smart phones and computing devices, optical fiber that carries the information in the internet, advanced precision manufacturing, enhanced defense capabilities, and a plethora of medical diagnostics tools. The opportunities arising from optics and photonics offer the potential for even greater societal impact in the next few decades, including solar power generation and new efficient lighting that could transform the nation's energy landscape and new optical capabilities that will be essential to support the continued exponential growth of the Internet. As described in the National Research Council report Optics and Photonics: Essential Technologies for our Nation, it is critical for the United States to take advantage of these emerging optical technologies for creating new industries and generating job growth. The report assesses the current state of optical science and engineering in the United States and abroad-including market trends, workforce needs, and the impact of photonics on the national economy. It identifies the technological opportunities that have arisen from recent advances in, and applications of, optical science and engineering. The report also calls for improved management of U.S. public and private research and development resources, emphasizing the need for public policy that encourages adoption of a portfolio approach to investing in the wide and diverse opportunities now available within photonics. Optics and Photonics: Essential Technologies for our Nation is a useful overview not only for policymakers, such as decision-makers at relevant Federal agencies on the current state of optics and photonics research and applications but also for individuals seeking a broad understanding of the fields of optics and photonics in many arenas.




Polarized Light and Optical Systems


Book Description

Polarized Light and Optical Systems presents polarization optics for undergraduate and graduate students in a way which makes classroom teaching relevant to current issues in optical engineering. This curriculum has been developed and refined for a decade and a half at the University of Arizona’s College of Optical Sciences. Polarized Light and Optical Systems provides a reference for the optical engineer and optical designer in issues related to building polarimeters, designing displays, and polarization critical optical systems. The central theme of Polarized Light and Optical Systems is a unifying treatment of polarization elements as optical elements and optical elements as polarization elements. Key Features Comprehensive presentation of Jones calculus and Mueller calculus with tables and derivations of the Jones and Mueller matrices for polarization elements and polarization effects Classroom-appropriate presentations of polarization of birefringent materials, thin films, stress birefringence, crystal polarizers, liquid crystals, and gratings Discussion of the many forms of polarimeters, their trade-offs, data reduction methods, and polarization artifacts Exposition of the polarization ray tracing calculus to integrate polarization with ray tracing Explanation of the sources of polarization aberrations in optical systems and the functional forms of these polarization aberrations Problem sets to build students’ problem-solving capabilities.




Applications of Photonic Technology


Book Description

In this book we present a snapshot of the state of the art in photonics in 1994, showing typical applications and emerging new ones; discussing the key technologies behind these applications, their limitations, and prospects. The articles in this book are extended versions of the papers presented at the first International Conference on Applications ofPhotonic Technology (ICAPT'94), held in Toronto, Canada, on June 21-23, 1994. Photonics has been recognized as one of the key technologies for the 21 st century, as electronics was the technology of the 20th centrury and electrical engineering changed the life of people in the 19th century. According to the recent report of the Organization for Economic Cooperation and Development in Paris (OECD), the market for photonics will grow dramatically in the next 10 years with an expected world-wide expenditure of US $230 billion from some US $30 billion in 1992. The explosion of information technology was the largest driving force for the deployment of photonic technology. It created insatiable demand for ever-higher data transmission and processing rates, which cannot be sustained by electronics alone. Boosted by the enonnous investment of the telecommunications and defense industries, the demand for photonics (or optoelectronics) is steadily increasing. It is solidly established in the long haul communications, laser printers and CD-ROMs.




Harnessing Light


Book Description

Optical science and engineering affect almost every aspect of our lives. Millions of miles of optical fiber carry voice and data signals around the world. Lasers are used in surgery of the retina, kidneys, and heart. New high-efficiency light sources promise dramatic reductions in electricity consumption. Night-vision equipment and satellite surveillance are changing how wars are fought. Industry uses optical methods in everything from the production of computer chips to the construction of tunnels. Harnessing Light surveys this multitude of applications, as well as the status of the optics industry and of research and education in optics, and identifies actions that could enhance the field's contributions to society and facilitate its continued technical development.




Photonic Crystals


Book Description

A photonic crystal fiber (also called microstructure fiber, holey fiber, holeassisted fiber, or micro-structured optical fiber, etc.) is a single material optical fiber which obtains its waveguide properties from an arrangement of very tiny and closely spaced airholes which go through the whole length of the fiber. Unlike the traditional fiber, both the core and cladding are made from the same material in PCFs and light can be well confined and guided properly through the fiber by the mechanism of either total internal reflection (TIR) or photonic band gap (PBG). This book discusses the characteristics, performance and applications of photonic crystals. Chapter One reviews the design characteristics and optical properties. Chapter Two studies band structure of metal/dielectric photonic crystals. Chapter Three describes the splitting method in multicore photonic crystal fiber (PCF). Chapter Four focuses on switches, isolators, circulators, and multifunctional components for optical and THz regions based on 2D photonic crystals with magneto-optical resonators.




Polymers for Photonics Applications II


Book Description

The future of information technology requires ultra high speed processing and large data storage capacity. Since the electronics technology using semi conduc tors and inorganic materials is about to reach its limits, much current research is focused on utilizing much faster photons than electrons, namely photonics. To achieve any significant effect on the actual use of the science of photonics, devel opments of more efficient photonics materials, better optical property evaluations, manufacture of devices for system applications, etc. are the subjects which need to be explored. In particular, the development of photonics materials stands in the forefront of research as this constitutes the most pertinent factor with regard to the development of ultra high speed and large capacity information processing. In this respect, there has been continuous research on photo responsive materials through molecular structure design and architecture and the results so far are very promising as functions and performances are beginning to realize their high expectations. The two special volumes "Polymers for Photonics Applications" give authorita tive and critical reviews on up to date activities in various fields of photonic poly mers including their promising applications. Seven articles have been contributed by internationally recognized and they deal with, polymers for second and third order nonlinear optics, quadratic parametric interactions in polymer waveguides, electroluminescent polymers as light sources, photoreflective polymers for holo graphic information storage, and highly efficient two photon absorbing organics and polymers.




Photonic Microresonator Research and Applications


Book Description

The technology surrounding the design and fabrication of optical microresonators has matured to a point where there is a need for commercialization. Consequently, there is a need for device research involving more advanced architectures and more esoteric operating principles. Photonic Microresonator Research and Applications explores advances in the fabrication process that enable nanometer waveguide separations, exceptionally smooth surfaces essential to reach Q factors in the order of 106- 108 and high index contrast materials.




Photonics and Fiber Optics


Book Description

The combination of laser and optoelectronics with optical fiber technology can enhance the seamless activities of fiber-optic communications and fiber-sensor arena. This book discusses foundations of laser technology, non-linear optics, laser and fiber-optic applications in telecommunication and sensing fields including fundamentals and recent developments in photonics technology. Accumulated chapters cover constituent materials, techniques of measurement of non-linear optical properties of nanomaterials, photonic crystals and pertinent applications in medical, high voltage engineering and, in optical computations and designing logic gates.




Ferroelectric Crystals for Photonic Applications


Book Description

This book deals with the latest achievements in the field of ferroelectric domain engineering and characterization at micron- and nano-scale dimensions and periods. The book collects the results obtained in recent years by world renowned scientific leaders in the field, thus providing a valid and unique overview of the state-of-the-art. At the same time the book provides a view to future applications of those engineered materials in the field of photonics.