Applications of Remote Sensing in Coastal Areas


Book Description

Coastal areas are remarkable regions with high spatiotemporal variability. A large population is affected by their physical and biological processes—resulting from effects on tourism to biodiversity and productivity. Coastal ecosystems perform several critical ecosystem services and functions, such as water oxygenation and nutrients provision, seafloor and beach stabilization (as sediment is controlled and trapped within the rhizomes of the seagrass meadows), carbon burial, as areas for nursery, and as refuge for several commercial and endemic species. Knowledge of the spatial distribution of marine habitats is prerequisite information for the conservation and sustainable use of marine resources. Remote sensing from UAVs to spaceborne sensors is offering a unique opportunity to measure, analyze, quantify, map, and explore the processes on the coastal areas at high temporal frequencies. This Special Issue on “Application of Remote Sensing in Coastal Areas” is specifically addresses those successful applications—from local to regional scale—in coastal environments related to ecosystem productivity, biodiversity, sea level rise.




Applications of Remote Sensing in Coastal Areas


Book Description

Coastal areas are remarkable regions with high spatiotemporal variability. A large population is affected by their physical and biological processes--resulting from effects on tourism to biodiversity and productivity. Coastal ecosystems perform several critical ecosystem services and functions, such as water oxygenation and nutrients provision, seafloor and beach stabilization (as sediment is controlled and trapped within the rhizomes of the seagrass meadows), carbon burial, as areas for nursery, and as refuge for several commercial and endemic species. Knowledge of the spatial distribution of marine habitats is prerequisite information for the conservation and sustainable use of marine resources. Remote sensing from UAVs to spaceborne sensors is offering a unique opportunity to measure, analyze, quantify, map, and explore the processes on the coastal areas at high temporal frequencies. This Special Issue on “Application of Remote Sensing in Coastal Areas” is specifically addresses those successful applications--from local to regional scale--in coastal environments related to ecosystem productivity, biodiversity, sea level rise.




Remote Sensing of Ocean and Coastal Environments


Book Description

Remote Sensing of Ocean and Coastal Environments advances the scientific understanding and application of technologies to address a variety of areas relating to sustainable development, including environmental systems analysis, environmental management, clean processes, green chemistry and green engineering. Through each contributed chapter, the book covers ocean remote sensing, ocean color monitoring, modeling biomass and the carbon of oceanic ecosystems, sea surface temperature (SST) and sea surface salinity, ocean monitoring for oil spills and pollutions, coastal erosion and accretion measurement. This book is aimed at those with a common interest in oceanography techniques, sustainable development and other diverse backgrounds within earth and ocean science fields. This book is ideal for academicians, scientists, environmentalists, meteorologists, environmental consultants and computing experts working in the areas of earth and ocean sciences. Provides a comprehensive assessment of various ocean processes and their relative phenomena Includes graphical abstract and photosets in each chapter Presents literature reviews, case studies and applications




Remote Sensing of Coastal Environments


Book Description

As coastal environments around the world face unprecedented natural and anthropogenic threats, advancements in the technologies that support geospatial data acquisition, imaging, and computing have profoundly enhanced monitoring capabilities in coastal studies. Providing systematic treatment of the key developments, Remote Sensing of Coastal Enviro




Science and Applications of Coastal Remote Sensing


Book Description

IN MEMORIAL: This Research Topic is dedicated to our co-editor Dr. Tiffany Moisan, a well-regarded ocean color remote sensing scientist, who unexpectedly passed away during its preparation. Dr. Moisan was a dear friend, and upbeat and enthusiastic colleague and a scientist committed to the use of remote sensing to improve our understanding of marine microbiology and phytoplankton ecology. She was a strong supporter of the development of remote sensing capabilities and applications for coastal and inland waters, and we know that she would have wanted this Research Topic to provide her colleagues an opportunity to share and promote their work in this area. A voice in our community is now quiet. Let the chorus of our shared song continue with her memory. Dr. Tiffany Moisan is survived by her loving family, including her husband, Dr. John Moisan and her two daughters.




Coastal and Marine Geo-Information Systems


Book Description

The emphasis now placed on the concept of sediment cells as boundaries for coastal defence groups, and the development of SMPs, should help CPAs realise the importance of natural processes at the coast when designing defence and protection schemes. However, this will only be the case where defence groups exist, and where CPAs take up the challenge of developing SMPs. Coastal landscapes have been produced by the natural forces of wind, waves and tides, and many are nationally or internationally important for their habitats and natural features. Past practices at the coast, such as the construction of harbours, jetties and traditional defence systems may have contributed to the deterioration of the coast. English Nature (1992) have argued that if practices and methods of coastal defence are allowed to continue, then coastlines would be faced with worsening consequences, including: The loss of mudflats and the birds which live on them Damage to geological Sites of Special Scientific Interest (SSSIs) and scenic heritage by erosion, due to the stabilisation of the coast elsewhere Cutting of sediment supplies to beaches resulting in the loss of coastal wildlife Cessation through isolation from coastal processes, of the natural operation of spits, with serious deterioration of rare plants, animals and geomorphological and scenic qualities (English Nature, 1992) A number of designations, provided by national and international legislation do exist to aid conservation.




Remote Sensing of Aquatic Coastal Ecosystem Processes


Book Description

The aquatic coastal zone is one of the most challenging targets for environmental remote sensing. Properties such as bottom reflectance, spectrally diverse suspended sediments and phytoplankton communities, diverse benthic communities, and transient events that affect surface reflectance (coastal blooms, runoff, etc.) all combine to produce an optical complexity not seen in terrestrial or open ocean systems. Despite this complexity, remote sensing is proving to be an invaluable tool for "Case 2" waters. This book presents recent advances in coastal remote sensing with an emphasis on applied science and management. Case studies of the operational use of remote sensing in ecosystem studies, monitoring, and interfacing remote sensing/science/management are presented. Spectral signatures of phytoplankton and suspended sediments are discussed in detail with accompanying discussion of why blue water (Case 1) algorithms cannot be applied to Case 2 waters. Audience This book is targeted for scientists and managers interested in using remote sensing in the study or management of aquatic coastal environments. With only limited discussion of optics and theory presented in the book, such researchers might benefit from the detailed presentations of aquatic spectral signatures, and to operational management issues. While not specifically written for remote sensing scientists, it will prove to be a useful reference for this community for the current status of aquatic coastal remote sensing.




Land Surface Remote Sensing in Urban and Coastal Areas


Book Description

For a long time, the dynamics of urban and coastal areas have been the focus of administrators and decision makers in charge of public policy in order to better take into account anthropogenic pressure and the impact of climate change. This volume presents applications of remote sensing in urban environments and coastal zones, including the use of remote sensing in city planning (urban expansion, light pollution, air quality, etc.), observation of the properties of ocean color, the study of coastal dynamics (identifying coastlines and estimating sediment balances, etc.) and analysis of the dynamics of mangroves. This book, part of a set of six volumes, has been produced by scientists who are internationally renowned in their fields. It is addressed to students (engineers, Masters, PhD), engineers and scientists, specialists in remote sensing applied to the coastal environment and urban areas.Through this pedagogical work, the authors contribute to breaking down the barriers that hinder the use of Earth observation data. Clear-and-concise descriptions of modern methods of remote sensing for a variety of applications Explores the most current remote sensing techniques, with physical aspects of their measurement (theory) Presents physical principles, measurement, and data processing chapters that are provided for each technique described




Remote Sensing and Modeling


Book Description

This book is geared for advanced level research in the general subject area of remote sensing and modeling as they apply to the coastal marine environment. The various chapters focus on the latest scientific and technical advances in the service of better understanding coastal marine environments for their care, conservation and management. Chapters specifically deal with advances in remote sensing coastal classifications, environmental monitoring, digital ocean technological advances, geophysical methods, geoacoustics, X-band radar, risk assessment models, GIS applications, real-time modeling systems, and spatial modeling. Readers will find this book useful because it summarizes applications of new research methods in one of the world’s most dynamic and complicated environments. Chapters in this book will be of interest to specialists in the coastal marine environment who deals with aspects of environmental monitoring and assessment via remote sensing techniques and numerical modeling.




Remote Sensing Applications in Marine Science and Technology


Book Description

This summer school was a sequel to the summer school on Remote Sensing in Meteorology, Oceanography and Hydrology which was held in Dundee in 1980 and the proceedings of which were published by Ellis Horwood Ltd., Chichester, England. At the present summer scnool we concentrated on only part of the subject area that was covered in 1980. Although there was some repetit ion of material that was presented in 1980, because by and large we had a new set of participants, most subjects were treated in considerably greater detail than had been possible previously. The major topics covered in the present summer school were (i) the general principles of remote sensing with particular reference to marine applications, (ii) applications to physical oceanography, (iii) marine resources applications and (iv) coastal monitoring and protection. The material contained in this volume represents the written texts of most of the lectures presented at the summer school. One important set of lecture notes was not available; this was for the lectures on active microwave techniques, principally synthetic aperture radar, by W. Alpers from Hamburg. For this material we would refer the reader to "Imaging Ocean Surface Waves by Synthetic Aperture Radar - A Review" by W. Alpers,which is to appear as chapter 6 in "Satellite Microwave Remote Sensing" edited by T.D. Allan (Ellis Horwood, Chichester) which is to be published in 1983.