Applied Analysis, Optimization and Soft Computing


Book Description

This book contains select contributions presented at the International Conference on Nonlinear Applied Analysis and Optimization (ICNAAO-2021), held at the Department of Mathematics Sciences, Indian Institute of Technology (BHU) Varanasi, India, from 21–23 December 2021. The book discusses topics in the areas of nonlinear analysis, fixed point theory, dynamical systems, optimization, fractals, applications to differential/integral equations, signal and image processing, and soft computing, and exposes the young talents with the newer dimensions in these areas with their practical approaches and to tackle the real-life problems in engineering, medical and social sciences. Scientists from the U.S.A., Austria, France, Mexico, Romania, and India have contributed their research. All the submissions are peer reviewed by experts in their fields.




Applied Analysis, Optimization and Soft Computing


Book Description

This book contains select contributions presented at the International Conference on Nonlinear Applied Analysis and Optimization (ICNAAO-2021), held at the Department of Mathematics, Indian Institute of Technology (BHU) Varanasi, India, from 21-23 December 2021. The book discusses topics in the areas of nonlinear analysis, fixed point theory, dynamical systems, optimization, fractals, applications to differential/integral equations, signal and image processing, and soft computing, and exposes the young talents with the newer dimensions in these areas with their practical approaches and to tackle the real-life problems in engineering, medical and social sciences. Scientists from the U.S.A., Austria, France, Mexico, Romania, and India have contributed their research. All the submissions are peer reviewed by experts in their fields.




Applied Nonlinear Analysis and Soft Computing


Book Description

The volume contains original research papers as the Proceedings of the International Conference on Applied Nonlinear Analysis and Soft Computing (ANASC 2020), held at Gauhati University, Guwahati, India, on 22-23 December, 2020. It focuses on current research topics in applied analysis including nonlinearity, soft computing and related areas. It primarily includes topics related to pattern recognition, reaction-diffusion problem, decision making problems, inventory model, predator-prey model, logistic models, wave problems, problems in Magnetohydrodynamics, cosmological model, harmonic functions, graphs, shapes, etc. Researchers, educators, scientist and professionals interested in recent developments in applied analysis including nonlinearity aspects and soft computing should be benefited from this volume.




Problem Solving and Uncertainty Modeling through Optimization and Soft Computing Applications


Book Description

Optimization techniques have developed into a modern-day solution for real-world problems in various industries. As a way to improve performance and handle issues of uncertainty, optimization research becomes a topic of special interest across disciplines. Problem Solving and Uncertainty Modeling through Optimization and Soft Computing Applications presents the latest research trends and developments in the area of applied optimization methodologies and soft computing techniques for solving complex problems. Taking a multi-disciplinary approach, this critical publication is an essential reference source for engineers, managers, researchers, and post-graduate students.




Handbook of Research on Soft Computing and Nature-Inspired Algorithms


Book Description

Soft computing and nature-inspired computing both play a significant role in developing a better understanding to machine learning. When studied together, they can offer new perspectives on the learning process of machines. The Handbook of Research on Soft Computing and Nature-Inspired Algorithms is an essential source for the latest scholarly research on applications of nature-inspired computing and soft computational systems. Featuring comprehensive coverage on a range of topics and perspectives such as swarm intelligence, speech recognition, and electromagnetic problem solving, this publication is ideally designed for students, researchers, scholars, professionals, and practitioners seeking current research on the advanced workings of intelligence in computing systems.




Nature-Inspired Optimization Algorithms


Book Description

Nature-Inspired Optimization Algorithms, Second Edition provides an introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, and multi-objective optimization. This book can serve as an introductory book for graduates, for lecturers in computer science, engineering and natural sciences, and as a source of inspiration for new applications. Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature Provides a theoretical understanding and practical implementation hints Presents a step-by-step introduction to each algorithm Includes four new chapters covering mathematical foundations, techniques for solving discrete and combination optimization problems, data mining techniques and their links to optimization algorithms, and the latest deep learning techniques, background and various applications




Handbook of Research on Emergent Applications of Optimization Algorithms


Book Description

Modern optimization approaches have attracted an increasing number of scientists, decision makers, and researchers. As new issues in this field emerge, different optimization methodologies must be developed and implemented. The Handbook of Research on Emergent Applications of Optimization Algorithms is an authoritative reference source for the latest scholarly research on modern optimization techniques for solving complex problems of global optimization and their applications in economics and engineering. Featuring coverage on a broad range of topics and perspectives such as hybrid systems, non-cooperative games, and cryptography, this publication is ideally designed for students, researchers, and engineers interested in emerging developments in optimization algorithms.




Applied Computational Intelligence and Soft Computing in Engineering


Book Description

Presents the latest scholarly research on the concepts, paradigms, and algorithms of computational intelligence and its constituent methodologies, such as evolutionary computation, neural networks, and fuzzy logic. This volume ncludes coverage on a broad range of topics and perspectives such as cloud computing, sampling in optimization, and swarm intelligence.




Soft Computing in Interdisciplinary Sciences


Book Description

This book meets the present and future needs for the interaction between various science and technology/engineering areas on the one hand and different branches of soft computing on the other. Soft computing is the recent development about the computing methods which include fuzzy set theory/logic, evolutionary computation (EC), probabilistic reasoning, artificial neural networks, machine learning, expert systems, etc. Soft computing refers to a partnership of computational techniques in computer science, artificial intelligence, machine learning, and some other engineering disciplines, which attempt to study, model, and analyze complex problems from different interdisciplinary problems. This, as opposed to traditional computing, deals with approximate models and gives solutions to complex real-life problems. Unlike hard computing, soft computing is tolerant of imprecision, uncertainty, partial truth, and approximations. Interdisciplinary sciences include various challenging problems of science and engineering. Recent developments in soft computing are the bridge to handle different interdisciplinary science and engineering problems. In recent years, the correspondingly increased dialog between these disciplines has led to this new book. This is done, firstly, by encouraging the ways that soft computing may be applied in traditional areas, as well as point towards new and innovative areas of applications and secondly, by encouraging other scientific disciplines to engage in a dialog with the above computation algorithms outlining their problems to both access new methods as well as to suggest innovative developments within itself.




Soft Computing Approach for Mathematical Modeling of Engineering Problems


Book Description

This book describes different mathematical modeling and soft computing techniques used to solve practical engineering problems. It gives an overview of the current state of soft computing techniques and describes the advantages and disadvantages of soft computing compared to traditional hard computing techniques. Through examples and case studies, the editors demonstrate and describe how problems with inherent uncertainty can be addressed and eventually solved through the aid of numerical models and methods. The chapters address several applications and examples in bioengineering science, drug delivery, solving inventory issues, Industry 4.0, augmented reality and weather forecasting. Other examples include solving fuzzy-shortest-path problems by introducing a new distance and ranking functions. Because, in practice, problems arise with uncertain data and most of them cannot be solved exactly and easily, the main objective is to develop models that deliver solutions with the aid of numerical methods. This is the reason behind investigating soft numerical computing in dynamic systems. Having this in mind, the authors and editors have considered error of approximation and have discussed several common types of errors and their propagations. Moreover, they have explained the numerical methods, along with convergence and consistence properties and characteristics, as the main objectives behind this book involve considering, discussing and proving related theorems within the setting of soft computing. This book examines dynamic models, and how time is fundamental to the structure of the model and data as well as the understanding of how a process unfolds • Discusses mathematical modeling with soft computing and the implementations of uncertain mathematical models • Examines how uncertain dynamic systems models include uncertain state, uncertain state space and uncertain state’s transition functions • Assists readers to become familiar with many soft numerical methods to simulate the solution function’s behavior This book is intended for system specialists who are interested in dynamic systems that operate at different time scales. The book can be used by engineering students, researchers and professionals in control and finite element fields as well as all engineering, applied mathematics, economics and computer science interested in dynamic and uncertain systems. Ali Ahmadian is a Senior Lecturer at the Institute of IR 4.0, The National University of Malaysia. Soheil Salahshour is an associate professor at Bahcesehir University.