Applied Chemistry


Book Description

This updated edition of Gesser’s classic textbook has undergone a full revision and now has the latest material, including new chapters on semiconductors and nanotechnology. It includes a supplementary laboratory section with stepwise experimental protocols.




Applied Chemistry: A Textbook for Engineers and Technologists


Book Description

This book is the result of teaching a one semester course in Applied Chemistry (Chemistry 224) to second year engineering students for over 15 years. The contents of the course evolved as the interests and needs of both the students and Engineering Faculty changed. All the students had at least one semester of Introductory Chemistry and it has been assumed in this text that the students have been exposed to Thermodynamics, Chemical Kinetics, Solution Equilibrium, and Organic Chemistry. These topics must be discussed either before starting the Applied subjects or developed as required if the students are not familiar with these prerequisites. Engineering students often ask 'Why is another Chemistry course required for Non-Chemical Engineers?' There are many answers to this question but foremost is that the Professional Engineer must know when to consult a Chemist and be able to communicate with him. When this is not done the consequences can be a disaster due to faulty design, poor choice of materials or inadequate safety factors. Examples of blunders abound and only a few will be described in an attempt to convince the student to take the subject matter seriously.




Applied Chemistry for Engineers


Book Description




Introduction to Chemical Engineering


Book Description

The field of chemical engineering is undergoing a global “renaissance,” with new processes, equipment, and sources changing literally every day. It is a dynamic, important area of study and the basis for some of the most lucrative and integral fields of science. Introduction to Chemical Engineering offers a comprehensive overview of the concept, principles and applications of chemical engineering. It explains the distinct chemical engineering knowledge which gave rise to a general-purpose technology and broadest engineering field. The book serves as a conduit between college education and the real-world chemical engineering practice. It answers many questions students and young engineers often ask which include: How is what I studied in the classroom being applied in the industrial setting? What steps do I need to take to become a professional chemical engineer? What are the career diversities in chemical engineering and the engineering knowledge required? How is chemical engineering design done in real-world? What are the chemical engineering computer tools and their applications? What are the prospects, present and future challenges of chemical engineering? And so on. It also provides the information new chemical engineering hires would need to excel and cross the critical novice engineer stage of their career. It is expected that this book will enhance students understanding and performance in the field and the development of the profession worldwide. Whether a new-hire engineer or a veteran in the field, this is a must—have volume for any chemical engineer’s library.




Applied Chemistry and Chemical Engineering


Book Description

This new book brings together innovative research, new concepts, and novel developments in the application of informatics tools for applied chemistry and computer science. It presents a modern approach to modeling and calculation and also looks at experimental design in applied chemistry and chemical engineering. The volume discusses the developments of advanced chemical products and respective tools to characterize and predict the chemical material properties and behavior. Providing numerous comparisons of different methods with one another and with different experiments, not only does this book summarize the classical theories, but it also exhibits their engineering applications in response to the current key issues. Recent trends in several areas of chemistry and chemical engineering science, which have important application to practice, are discussed. Applied Chemistry and Chemical Engineering: Volume 1: Mathematical and Analytical Techniquesprovides valuable information for chemical engineers and researchers as well as for graduate students. It demonstrates the progress and promise for developing chemical materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications. Volume 2 will focus principles and methodologies in applied chemistry and chemical engineering.




A TEXTBOOK OF ENGINEERING CHEMISTRY


Book Description

Any good text book,particularly that in the fast changing fields such as engineering & technology,is not only expected to cater to the current curricular requirments of various institutions but also should provied a glimplse towards the latest developments in the concerned subject and the relevant disciplines.It should guide the periodic review and updating of the curriculum.







Applied Chemistry


Book Description




Chemical Technology


Book Description

This textbook provides an integral and integrated treatment of industrial-relevant problems for students of both chemistry and chemical engineering. As such, this work combines the four disciplines of chemical technology - chemistry, thermal and mechanical unit operations, chemical reaction engineering and general chemical technology - and is organized into two main parts. The first covers the fundamentals, as well as the analysis and design of industrial processes, while the second section presents 20 concrete processes, exemplifying the inherent applied nature of chemical technology. These are selected so that they all differ with respect to at least one important aspect, such as the type and design of the reactor, the chemistry involved or the separation process used. As a result, readers will recapitulate, deepen and exercise the chemical and engineering principles and their interplay, as well as being able to apply them to industrial practice. Instructive figures, rules of thumb for swift but reliable estimating of parameters, data of chemical media, and examples utilizing data from industrial processes facilitate and enhance the study process. A small general survey of selected modern trends, such as multifunctional and micro reactors, or new solvents for homogeneous catalysis, such as ionic liquids, point out to the reader that this is not a concluded discipline, but a developing field with many challenges waiting to be solved.




Applied Physical Chemistry with Multidisciplinary Approaches


Book Description

Presenting illustrative case studies, highlighting technological applications, and explaining theoretical and foundational concepts, this book is an important reference source on the key concepts for modern technologies and optimization of new processes in physical chemistry. This volume combines up-to-date research findings and relevant theoretical frameworks on applied chemistry, materials, and chemical engineering. This new volume presents an up-to-date review of modern materials and chemistry concepts, issues, and recent advances in the field. Distinguished scientists and engineers from key institutions worldwide have contributed chapters that provide a deep analysis of their particular subjects. At the same time, each topic is framed within the context of a broader more multidisciplinary approach, demonstrating its relationship and interconnectedness to other areas. The premise of this book, therefore, is to offer both a comprehensive understanding of applied science and engineering as a whole and a thorough knowledge of individual subjects. This approach appropriately conveys the basic fundamentals, state-of-the-art technology, and applications of the involved disciplines, and further encourages scientific collaboration among researchers. This volume emphasizes the intersection of chemistry, math, physics, and the resulting applications across many disciplines of science and explores applied physical chemistry principles in specific areas, including the life chemistry, environmental sciences, geosciences, and materials sciences. The applications from these multidisciplinary fields illustrate methods that can be used to model physical processes, design new products and find solutions to challenging problems.