Applied Civil Engineering Risk Analysis


Book Description

This updated edition retains its introduction to applied fundamental statistics, probability, reliability, and decision theory as these pertain to problems in Civil Engineering. The new edition adds an expanded treatment of systems reliability, Bayesian methods, and spatial variabililty, along with additional example problems throughout. The book provides readers with the tools needed to determine the probability of failure, and when multiplied by the consequences of failure, illustrates how to assess the risk of civil engineering problems. Presenting methods for quantifying uncertainty that exists in engineering analysis and design, with an emphasis on fostering more accurate analysis and design, the text is ideal for students and practitioners of a range of civil engineering disciplines. Expands on the class-tested pedagogy from the first edition with more material and more examples; Broadens understanding with simulations coded both in Matlab and in R; Features new chapters on spatial variability and Bayesian methods; Emphasizes techniques for estimating the influence of uncertainty on the probability of failure




Applied Civil Engineering Risk Analysis


Book Description

This book provides an introduction to applied fundamental statistics, probability, reliability, and decision theory as these pertain to problems in Civil Engineering and related fields (e.g., Environmental Engineering, Engineering Geology, Engineering Seismology, etc.).




Risk and Reliability Analysis


Book Description

Singh, Jain, and Tyagi present the key concepts of risk and reliability that apply to a wide array of problems in civil and environmental engineering.




Risk Analysis in Engineering and Economics


Book Description

More than any other book available, Risk Analysis in Engineering and Economics introduces the fundamental concepts, techniques, and applications of the subject in a style tailored to meet the needs of students and practitioners of engineering, science, economics, and finance. Drawing on his extensive experience in uncertainty and risk modeling and analysis, the author leads readers from the fundamental concepts through the theory, applications, and data requirements, sources, and collection. He emphasizes the practical use of the methods presented and carefully examines the limitations, advantages, and disadvantages of each. Case studies that incorporate the techniques discussed offer a practical perspective that helps readers clearly identify and solve problems encountered in practice. If you deal with decision-making under conditions of uncertainty, this book is required reading. The presentation includes more than 300 tables and figures, more than 100 examples, many case studies, and a wealth of end-of-chapter problems. Unlike the classical books on reliability and risk assessment, this book helps you relate underlying concepts to everyday applications and better prepares you to understand and use the methods of risk analysis.




Data Analytics for Engineering and Construction Project Risk Management


Book Description

This book provides a step-by-step guidance on how to implement analytical methods in project risk management. The text focuses on engineering design and construction projects and as such is suitable for graduate students in engineering, construction, or project management, as well as practitioners aiming to develop, improve, and/or simplify corporate project management processes. The book places emphasis on building data-driven models for additive-incremental risks, where data can be collected on project sites, assembled from queries of corporate databases, and/or generated using procedures for eliciting experts’ judgments. While the presented models are mathematically inspired, they are nothing beyond what an engineering graduate is expected to know: some algebra, a little calculus, a little statistics, and, especially, undergraduate-level understanding of the probability theory. The book is organized in three parts and fourteen chapters. In Part I the authors provide the general introduction to risk and uncertainty analysis applied to engineering construction projects. The basic formulations and the methods for risk assessment used during project planning phase are discussed in Part II, while in Part III the authors present the methods for monitoring and (re)assessment of risks during project execution.




Reliability and Risk Analysis in Engineering and Medicine


Book Description

This graduate textbook imparts the fundamentals of reliability and risk that can be connected mathematically and applied to problems in engineering and medical science and practice. The book is divided into eight chapters, the first three of which deal with basic fundamentals of probability theory and reliability methods. The fourth chapter illustrates simulation methods needed to solve complex problems. Chapters 5-7 explain reliability codes and system reliability (which uses the component reliabilities discussed in previous chapters). The book concludes in chapter 8 with an examination of applications of reliability within engineering and medical fields. Presenting a highly relevant competency for graduates entering product research and development, or facilities operations sectors, this text includes many examples and end of chapter study questions to maximize student comprehension. Explains concepts of reliability and risk estimation techniques in the context of medicine and engineering; Elucidates the interplay between reliability and risk from design to operation phases; Uses real world examples from engineering structures and medical devices and protocols; Adopts a lucid yet rigorous presentation of reliability and risk calculations; Reinforces students understanding of concepts covered with end-of-chapter exercises.




Engineering Construction Risks


Book Description

Risk analysis and management - an overview. When to apply risk management. Quantitative techniques for project risk analysis. Risk in estimating. Contract stategy...




Reliability and Statistics in Geotechnical Engineering


Book Description

Risk and reliability analysis is an area of growing importance in geotechnical engineering, where many variables have to be considered. Statistics, reliability modeling and engineering judgement are employed together to develop risk and decision analyses for civil engineering systems. The resulting engineering models are used to make probabilistic predictions, which are applied to geotechnical problems. Reliability & Statistics in Geotechnical Engineering comprehensively covers the subject of risk and reliability in both practical and research terms * Includes extensive use of case studies * Presents topics not covered elsewhere--spatial variability and stochastic properties of geological materials * No comparable texts available Practicing engineers will find this an essential resource as will graduates in geotechnical engineering programmes.




Probability and Risk Analysis


Book Description

This text presents notions and ideas at the foundations of a statistical treatment of risks. The focus is on statistical applications within the field of engineering risk and safety analysis. Coverage includes Bayesian methods. Such knowledge facilitates the understanding of the influence of random phenomena and gives a deeper understanding of the role of probability in risk analysis. The text is written for students who have studied elementary undergraduate courses in engineering mathematics, perhaps including a minor course in statistics. This book differs from typical textbooks in its verbal approach to many explanations and examples.




Risk Analysis in Engineering


Book Description

Based on the author’s 20 years of teaching, Risk Analysis in Engineering: Techniques, Tools, and Trends presents an engineering approach to probabilistic risk analysis (PRA). It emphasizes methods for comprehensive PRA studies, including techniques for risk management. The author assumes little or no prior knowledge of risk analysis on the part of the student and provides the necessary mathematical and engineering foundations. The text relies heavily on, but is not limited to, examples from the nuclear industry, because that is where PRA techniques were first developed. Since PRA provides a best-estimate approach, the author pays special attention to explaining uncertainty characterization. The book begins with a description of the basic definitions and principles of risk, safety, and performance and presents the elements of risk analysis and their applications in engineering. After highlighting the methods for performing PRAs, the author describes how to assess and measure performance of the building blocks of PRAs, such as reliability of hardware subsystems, structures, components, human actions, and software. He covers methods of characterizing uncertainties and methods for propagating them through the PRA model to estimate uncertainties of the results. The book explores how to identify and rank important and sensitive contributors to the estimated risk using the PRA and performance assessment models. It also includes a description of risk acceptance criteria and the formal methods for making decisions related to risk management options and strategies. The book concludes with a brief review of the main aspects, issues, and methods of risk communication. Drawing on notes, homework problems, and exams from courses he has taught as well as feedback from his students, Professor Modarres provides a from-the-trenches method for teaching risk assessment for engineers. This is a textbook that is easy to use for students and professors alike.