Applied Combinatorics, Third Edition


Book Description

The third edition of this popular text presents the tools of combinatorics for a first undergraduate course. After introducing fundamental counting rules, tools of graph theory and relations, the focus is on three basic problems of combinatorics: counting, existence, and optimization problems.




Applied Combinatorics


Book Description

"T. 1. Graph Theory. 1. Ch. 1. Elements of Graph Theory. 3. Ch. 2. Covering Circuits and Graph Coloring. 53. Ch. 3. Trees and Searching. 95. Ch. 4. Network Algorithms. 129. Pt. 2. Enumeration. 167. Ch. 5. General Counting Methods for Arrangements and Selections. 169. Ch. 6. Generating Functions. 241. Ch. 7. Recurrence Relations. 273. Ch. 8. Inclusion-Exclusion. 309. Pt. 3. Additional Topics. 341. Ch. 9. Polya's Enumeration Formula. 343. Ch. 10. Games with Graphs. 371. . Appendix. 387. . Glossary of Counting and Graph Theory Terms. 403. . Bibliography. 407. . Solutions to Odd-Numbered Problems. 409. . Index. 441.




Applied Combinatorics


Book Description




Applied Combinatorics


Book Description

Now with solutions to selected problems, Applied Combinatorics, Second Edition presents the tools of combinatorics from an applied point of view. This bestselling textbook offers numerous references to the literature of combinatorics and its applications that enable readers to delve more deeply into the topics.After introducing fundamental counting




Applied Combinatorics on Words


Book Description

Publisher Description




The Probabilistic Method


Book Description

Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.




Combinatorics


Book Description

Combinatorics, Second Edition is a well-rounded, general introduction to the subjects of enumerative, bijective, and algebraic combinatorics. The textbook emphasizes bijective proofs, which provide elegant solutions to counting problems by setting up one-to-one correspondences between two sets of combinatorial objects. The author has written the textbook to be accessible to readers without any prior background in abstract algebra or combinatorics. Part I of the second edition develops an array of mathematical tools to solve counting problems: basic counting rules, recursions, inclusion-exclusion techniques, generating functions, bijective proofs, and linear algebraic methods. These tools are used to analyze combinatorial structures such as words, permutations, subsets, functions, graphs, trees, lattice paths, and much more. Part II cover topics in algebraic combinatorics including group actions, permutation statistics, symmetric functions, and tableau combinatorics. This edition provides greater coverage of the use of ordinary and exponential generating functions as a problem-solving tool. Along with two new chapters, several new sections, and improved exposition throughout, the textbook is brimming with many examples and exercises of various levels of difficulty.




Foundations of Combinatorics with Applications


Book Description

This introduction to combinatorics, the foundation of the interaction between computer science and mathematics, is suitable for upper-level undergraduates and graduate students in engineering, science, and mathematics. The four-part treatment begins with a section on counting and listing that covers basic counting, functions, decision trees, and sieving methods. The following section addresses fundamental concepts in graph theory and a sampler of graph topics. The third part examines a variety of applications relevant to computer science and mathematics, including induction and recursion, sorting theory, and rooted plane trees. The final section, on generating functions, offers students a powerful tool for studying counting problems. Numerous exercises appear throughout the text, along with notes and references. The text concludes with solutions to odd-numbered exercises and to all appendix exercises.




Analytic Combinatorics


Book Description

Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.




Applied Discrete Structures


Book Description

''In writing this book, care was taken to use language and examples that gradually wean students from a simpleminded mechanical approach and move them toward mathematical maturity. We also recognize that many students who hesitate to ask for help from an instructor need a readable text, and we have tried to anticipate the questions that go unasked. The wide range of examples in the text are meant to augment the "favorite examples" that most instructors have for teaching the topcs in discrete mathematics. To provide diagnostic help and encouragement, we have included solutions and/or hints to the odd-numbered exercises. These solutions include detailed answers whenever warranted and complete proofs, not just terse outlines of proofs. Our use of standard terminology and notation makes Applied Discrete Structures a valuable reference book for future courses. Although many advanced books have a short review of elementary topics, they cannot be complete. The text is divided into lecture-length sections, facilitating the organization of an instructor's presentation.Topics are presented in such a way that students' understanding can be monitored through thought-provoking exercises. The exercises require an understanding of the topics and how they are interrelated, not just a familiarity with the key words. An Instructor's Guide is available to any instructor who uses the text. It includes: Chapter-by-chapter comments on subtopics that emphasize the pitfalls to avoid; Suggested coverage times; Detailed solutions to most even-numbered exercises; Sample quizzes, exams, and final exams. This textbook has been used in classes at Casper College (WY), Grinnell College (IA), Luzurne Community College (PA), University of the Puget Sound (WA).''--