Applied Elasticity and Plasticity


Book Description

Applied Elasticity and Plasticity is a comprehensive work that introduces graduate students and professionals in civil, mechanical, aeronautical and metallurgical engineering to the basic theories of elasticity, plasticity and their practical applications. Based on experimental data of static tension tests of material, several elastic and plastic stress-strain relations are derived, and commonly-used yield criteria and strain hardening rules are discussed as well. Analysis of conventional, deviatoric and mathematical stress and strain in two and three dimensions is presented. Analytical applications include torsion and bending of structural components subjected to various loadings, thick-walled cylindrical and spherical vessels subjected to internal and external pressures, stress-concentrations around holes, stress-intensity factors in structural components containing circular, elliptical and many more concepts important for professionals and students alike.







Applied Elasticity


Book Description




Computational Methods in Elasticity and Plasticity


Book Description

Computational Methods in Elasticity and Plasticity: Solids and Porous Media presents the latest developments in the area of elastic and elasto-plastic finite element modeling of solids, porous media and pressure-dependent materials and structures. The book covers the following topics in depth: the mathematical foundations of solid mechanics, the finite element method for solids and porous media, the theory of plasticity and the finite element implementation of elasto-plastic constitutive models. The book also includes: -A detailed coverage of elasticity for isotropic and anisotropic solids. -A detailed treatment of nonlinear iterative methods that could be used for nonlinear elastic and elasto-plastic analyses. -A detailed treatment of a kinematic hardening von Mises model that could be used to simulate cyclic behavior of solids. -Discussion of recent advances in the analysis of porous media and pressure-dependent materials in more detail than other books currently available. Computational Methods in Elasticity and Plasticity: Solids and Porous Media also contains problem sets, worked examples and a solutions manual for instructors.




Theory of Elasticity and Plasticity


Book Description

This book serves as a core text for university curricula in solid body mechanics and, at the same time, examines the main achievements of state of the art research in the mechanics of elastic and non-elastic materials. This latter goal of the book is achieved through rich bibliographic references, many from the authors’ own work. authors. Distinct from similar texts, there are no claims in this volume to a single universal theory of plasticity. However, solutions are given to some new problems and to the construction of models useful both in pedagogic terms for students and practical terms for professional design engineers. Examples include the authors’ decisions about the Brazilian test, stability of rock exposure, and pile foundations. Designed for both upper-level university students and specialists in the mechanics of deformable hard body, the material in this book serves as a source for numerous topics of course and diploma concentration.




Foundations of the Theory of Elasticity, Plasticity, and Viscoelasticity


Book Description

Foundations of the Theory of Elasticity, Plasticity, and Viscoelasticity details fundamental and practical skills and approaches for carrying out research in the field of modern problems in the mechanics of deformed solids, which involves the theories of elasticity, plasticity, and viscoelasticity. The book includes all modern methods of research as well as the results of the authors’ recent work and is presented with sufficient mathematical strictness and proof. The first six chapters are devoted to the foundations of the theory of elasticity. Theory of stress-strain state, physical relations and problem statements, variation principles, contact and 2D problems, and the theory of plates are presented, and the theories are accompanied by examples of solving typical problems. The last six chapters will be useful to postgraduates and scientists engaged in nonlinear mechanics of deformed inhomogeneous bodies. The foundations of the modern theory of plasticity (general, small elastoplastic deformations and the theory of flow), linear, and nonlinear viscoelasticity are set forth. Corresponding research of three-layered circular plates of various materials is included to illustrate methods of problem solving. Analytical solutions and numerical results for elastic, elastoplastic, lineaer viscoelastic and viscoelastoplastic plates are also given. Thermoviscoelastoplastic characteristics of certain materials needed for numerical account are presented in the eleventh chapter. The informative book is intended for scientists, postgraduates and higher-level students of engineering spheres and will provide important practical skills and approaches.




Applied Mechanics of Solids


Book Description

Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o




Elasticity and Plasticity


Book Description

This volume comprises two classic essays on the mathematical theories of elasticity and plasticity by authorities in this area of engineering science. Undergraduate and graduate students in engineering as well as professional engineers will find these works excellent texts and references. The Mathematical Theory of Elasticity covers plane stress and plane strain in the isotropic medium, holes and fillets of assignable shapes, approximate conformal mapping, reinforcement of holes, mixed boundary value problems, the third fundamental problem in two dimensions, eigensolutions for plane and axisymmetric states, anisotropic elasticity, thermal stress, elastic waves induced by thermal shock, three-dimensional contact problems, wave propagation, traveling loads and sources of disturbance, diffraction, and pulse propagation. The Mathematical Theory of Plasticity explores the theory of perfectly plastic solids, the theory of strain-hardening plastic solids, piecewise linear plasticity, minimum principles of plasticity, bending of a circular plate, and other problems.




Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity


Book Description

Nonlinear Continuum Mechanics for Finite Elasticity-Plasticity empowers readers to fully understand the constitutive equation of finite strain, an essential piece in assessing the deformation/strength of materials and safety of structures. The book starts by providing a foundational overview of continuum mechanics, elasticity and plasticity, then segues into more sophisticated topics such as multiplicative decomposition of deformation gradient tensor with the isoclinic concept and the underlying subloading surface concept. The subloading surface concept insists that the plastic strain rate is not induced suddenly at the moment when the stress reaches the yield surface but it develops continuously as the stress approaches the yield surface, which is crucially important for the precise description of cyclic loading behavior. Then, the exact formulations of the elastoplastic and viscoplastic constitutive equations based on the multiplicative decomposition are expounded in great detail. The book concludes with examples of these concepts and modeling techniques being deployed in real-world applications. Table of Contents: 1. Mathematical Basics 2. General (Curvilinear) Coordinate System 3. Description of Deformation/Rotation in Convected Coordinate System 4. Deformation/Rotation (Rate) Tensors 5. Conservation Laws and Stress Tensors 6. Hyperelastic Equations 7. Development of Elastoplastic Constitutive Equations 8. Multiplicative Decomposition of Deformation Gradient Tensor 9. Multiplicative Hyperelastic-based Plastic and Viscoplastic Constitutive Equations 10. Friction Model: Finite Sliding Theory - Covers both the fundamentals of continuum mechanics and elastoplasticity while also introducing readers to more advanced topics such as the subloading surface model and the multiplicative decomposition among others - Approaches finite elastoplasticity and viscoplasticty theory based on multiplicative decomposition and the subloading surface model - Provides a thorough introduction to the general tensor formulation details for the embedded curvilinear coordinate system and the multiplicative decomposition of the deformation gradient




Elasticity


Book Description

Elasticity: Theory and Applications reviews the theory and applications of elasticity. The book is divided into three parts. The first part is concerned with the kinematics of continuous media; the second part focuses on the analysis of stress; and the third part considers the theory of elasticity and its applications to engineering problems. This book consists of 18 chapters; the first of which deals with the kinematics of continuous media. The basic definitions and the operations of matrix algebra are presented in the next chapter, followed by a discussion on the linear transformation of points. The study of finite and linear strains gradually introduces the reader to the tensor concept. Orthogonal curvilinear coordinates are examined in detail, along with the similarities between stress and strain. The chapters that follow cover torsion; the three-dimensional theory of linear elasticity and the requirements for the solution of elasticity problems; the method of potentials; and topics related to cylinders, disks, and spheres. This book also explores straight and curved beams; the semi-infinite elastic medium and some of its related problems; energy principles and variational methods; columns and beam-columns; and the bending of thin flat plates. The final chapter is devoted to the theory of thin shells, with emphasis on geometry and the relations between strain and displacement. This text is intended to give advanced undergraduate and graduate students sound foundations on which to build advanced courses such as mathematical elasticity, plasticity, plates and shells, and those branches of mechanics that require the analysis of strain and stress.