Applied Energy


Book Description

Written in clear, concise language and designed for an introductory applied energy course, Applied Energy: An Introduction discusses energy applications in small-medium enterprises, solar energy, hydro and wind energy, nuclear energy, hybrid energy, and energy sustainability issues. Focusing on renewable energy technologies, energy conversion, and conservation and the energy industry, the author lists the key aspects of applied energy and related studies, taking a question-based approach to the material that is useful for both undergraduate students and postgraduates who want a broad overview of energy conversion. The author carefully designed the text to motivate students and give them the foundation they need to place the concepts presented into a real-world context. He begins with an introduction to the basics and the definitions used throughout the book. From there, he covers the energy industry and energy applications; energy sources, supply, and demand; and energy management, policy, plans, and analysis. Building on this, the author elucidates various energy saving technologies and energy storage methods, explores the pros and cons of fossil fuels and alternative energy sources, and examines the various types of applications of alternative energies. The book concludes with chapters on hybrid energy technology, hybrid energy schemes, other energy conversion methods, and applied energy issues. The book takes advantage of practical and application-based learning, presenting the information in various forms such as essential notes followed by practical projects, assignments, and objective and practical questions. In each chapter, a small section introduces some elements of applied energy design and innovation, linking knowledge with applied energy design and practice. The comprehensive coverage gives students the skills not only to master the concepts in the course, but also apply them to future work in this area.




Applied Data Analysis and Modeling for Energy Engineers and Scientists


Book Description

Applied Data Analysis and Modeling for Energy Engineers and Scientists fills an identified gap in engineering and science education and practice for both students and practitioners. It demonstrates how to apply concepts and methods learned in disparate courses such as mathematical modeling, probability,statistics, experimental design, regression, model building, optimization, risk analysis and decision-making to actual engineering processes and systems. The text provides a formal structure that offers a basic, broad and unified perspective,while imparting the knowledge, skills and confidence to work in data analysis and modeling. This volume uses numerous solved examples, published case studies from the author’s own research, and well-conceived problems in order to enhance comprehension levels among readers and their understanding of the “processes”along with the tools.




Applied Industrial Energy and Environmental Management


Book Description

Na ovoju: "Applied Industrial Energy and Environmental Management provides a comprehensive and application oriented approach to the technical and managerial challenges of efficient energy performance in industrial plants. Written by leading practitioners in the field with extensive experience of working with development banks, international aid organizations, and multinational companies, the authors are able to offer real case studies as a basis to their method." "This book will be a valuable resource to practising energy and environmental management engineers, plant managers and consultants in the energy and manufacturing industries. It will also be of interest to graduate engineering and science students taking courses in industrial energy and environmental management."




Applied Solar Energy


Book Description




Energy Methods in Applied Mechanics


Book Description

Integrated, modern treatment explores applications to dynamics of rigid bodies, analysis of elastic frames, general elastic theory, theory of plates and shells, theory of buckling, and theory of vibrations. Includes answers to problems. 1962 edition.




Handbook on Bioethanol


Book Description

Bioethanol is a versatile transportation fuel and fuel additive that offers excellent performance and reduced air pollution compared to conventional fuels. Its production and use adds little, if any, net release of carbon dioxide to the atmosphere, dramatically reducing the potential for global climate change. Through a sustained research program and an emerging economic competitiveness, the technology for bioethanol production is poised for immediate widespread commercial applications. Written by engineers and scientists providing a technical focus, this handbook provides the up-to-date information needed by managers, engineers, and scientists to evaluate the technology, market, and economics of this fuel, while examining the development of production required to support its commercial use.




Nanoenergy


Book Description

This book discuss the recent advances and future trends of nanoscience in solar energy conversion and storage. This second edition revisits and updates all the previous book chapters, adding the latest advances in the field of Nanoenergy. Four new chapters are included on the principles and fundamentals of artificial photosynthesis using metal transition semiconductors, perovskite solar cells, hydrogen storage and neutralization batteries. More fundamental aspects can be found in this book, increasing the comparison between theory-experimental achievements and latest developments in commercial devices.




Petroleum Products


Book Description

This book provides an overview of the chemical and physical concepts of instability and incompatibility of petroleum and liquid fuels. It helps the petroleum refinery personnel to handle liquid fuels from other sources as feedstocks for the refinery system.




Applied Thermodynamics


Book Description

Deals with the availability method and its application to power plant system design and energy conversion. The first part of the book describes the development and the formulation of the availability method. The second part presents its applications to energy conversion processes. Examples for each energy conversion system are introduced and there are practice problems throughout the text.




Prospective Evaluation of Applied Energy Research and Development at DOE (Phase Two)


Book Description

Since its inception in 1977 from an amalgam of federal authorities, the U.S. Department of Energy (DOE) has administered numerous programs aimed at developing applied energy technologies. In recent years, federal oversight of public expenditures has emphasized the integration of performance and budgeting. Notably, the Government Performance and Results Act (GPRA) was passed in 1993 in response to questions about the value and effectiveness of federal programs. GPRA and other mandates have led agencies to develop indicators of program performance and program outcomes. The development of indicators has been watched with keen interest by Congress, which has requested of the National Research Council (NRC) a series of reports using quantitative indicators to evaluate the effectiveness of applied energy research and development (R&D). The first such report took a retrospective view of the first 3 years of DOE R&D programs on fossil energy and energy efficiency. The report found that DOE-sponsored research had netted large commercial successes, such as advanced refrigerator compressors, electronic lighting ballasts, and emission control technology for flue gas desulfurization. However, some programs were judged to be costly failures in which large R&D expenditures did not result in a commercial energy technology. A follow-up NRC committee was assigned the task of adapting the methodology to the assessment of the future payoff of continuing programs. Evaluating the outcome of R&D expenditures requires an analysis of program costs and benefits. Doing so is not a trivial matter. First, the analysis of costs and benefits must reflect the full range of public benefits that are envisioned, accounting for environmental and energy security impacts as well as economic effects. Second, the analysis must consider how likely the research is to succeed and how valuable the research will be if successful. Finally, the analysis must consider what might happen if the government did not support the project: Would some non-DOE entity undertake it or an equivalent activity that would produce some or all of the benefits of government involvement? This second report continues to investigate the development and use of R&D outcome indicators and applies the benefits evaluation methodology to six DOE R&D activities. It provides further definition for the development of indicators for environmental and security benefits and refines the evaluation process based on its experience with the six DOE R&D case studies.