Applied Hyperfunction Theory


Book Description

Generalized functions are now widely recognized as important mathematical tools for engineers and physicists. But they are considered to be inaccessible for non-specialists. To remedy this situation, this book gives an intelligible exposition of generalized functions based on Sato's hyperfunction, which is essentially the `boundary value of analytic functions'. An intuitive image -- hyperfunction = vortex layer -- is adopted, and only an elementary knowledge of complex function theory is assumed. The treatment is entirely self-contained. The first part of the book gives a detailed account of fundamental operations such as the four arithmetical operations applicable to hyperfunctions, namely differentiation, integration, and convolution, as well as Fourier transform. Fourier series are seen to be nothing but periodic hyperfunctions. In the second part, based on the general theory, the Hilbert transform and Poisson-Schwarz integral formula are treated and their application to integral equations is studied. A great number of formulas obtained in the course of treatment are summarized as tables in the appendix. In particular, those concerning convolution, the Hilbert transform and Fourier transform contain much new material. For mathematicians, mathematical physicists and engineers whose work involves generalized functions.







Introduction to Hyperfunctions and Their Integral Transforms


Book Description

This textbook presents an introduction to the subject of generalized functions and their integral transforms by an approach based on the theory of functions of one complex variable. It includes many concrete examples.




Error Inequalities in Polynomial Interpolation and Their Applications


Book Description

This volume, which presents the cumulation of the authors' research in the field, deals with Lidstone, Hermite, Abel--Gontscharoff, Birkhoff, piecewise Hermite and Lidstone, spline and Lidstone--spline interpolating problems. Explicit representations of the interpolating polynomials and associated error functions are given, as well as explicit error inequalities in various norms. Numerical illustrations are provided of the importance and sharpness of the various results obtained. Also demonstrated are the significance of these results in the theory of ordinary differential equations such as maximum principles, boundary value problems, oscillation theory, disconjugacy and disfocality. For mathematicians, numerical analysts, computer scientists and engineers.




Applied Laplace Transforms and z-Transforms for Scientists and Engineers


Book Description

The theory of Laplace transformation is an important part of the mathematical background required for engineers, physicists and mathematicians. Laplace transformation methods provide easy and effective techniques for solving many problems arising in various fields of science and engineering, especially for solving differential equations. What the Laplace transformation does in the field of differential equations, the z-transformation achieves for difference equations. The two theories are parallel and have many analogies. Laplace and z transformations are also referred to as operational calculus, but this notion is also used in a more restricted sense to denote the operational calculus of Mikusinski. This book does not use the operational calculus of Mikusinski, whose approach is based on abstract algebra and is not readily accessible to engineers and scientists. The symbolic computation capability of Mathematica can now be used in favor of the Laplace and z-transformations. The first version of the Mathematica Package LaplaceAndzTransforrns developed by the author appeared ten years ago. The Package computes not only Laplace and z-transforms but also includes many routines from various domains of applications. Upon loading the Package, about one hundred and fifty new commands are added to the built-in commands of Mathematica. The code is placed in front of the already built-in code of Laplace and z-transformations of Mathematica so that built-in functions not covered by the Package remain available. The Package substantially enhances the Laplace and z-transformation facilities of Mathematica. The book is mainly designed for readers working in the field of applications.




Asymptotic Behavior of Generalized Functions


Book Description

The asymptotic analysis has obtained new impulses with the general development of various branches of mathematical analysis and their applications. In this book, such impulses originate from the use of slowly varying functions and the asymptotic behavior of generalized functions. The most developed approaches related to generalized functions are those of Vladimirov, Drozhinov and Zavyalov, and that of Kanwal and Estrada. The first approach is followed by the authors of this book and extended in the direction of the S-asymptotics. The second approach ? of Estrada, Kanwal and Vindas ? is related to moment asymptotic expansions of generalized functions and the Ces'aro behavior. The main features of this book are the uses of strong methods of functional analysis and applications to the analysis of asymptotic behavior of solutions to partial differential equations, Abelian and Tauberian type theorems for integral transforms as well as for the summability of Fourier series and integrals. The book can be used by applied mathematicians, physicists, engineers and others who use classical asymptotic methods and wish to consider non-classical objects (generalized functions) and their asymptotics now in a more advanced setting.




The Cauchy Method of Residues


Book Description

Volume 1, i. e. the monograph The Cauchy Method of Residues - Theory and Applications published by D. Reidel Publishing Company in 1984 is the only book that covers all known applications of the calculus of residues. They range from the theory of equations, theory of numbers, matrix analysis, evaluation of real definite integrals, summation of finite and infinite series, expansions of functions into infinite series and products, ordinary and partial differential equations, mathematical and theoretical physics, to the calculus of finite differences and difference equations. The appearance of Volume 1 was acknowledged by the mathematical community. Favourable reviews and many private communications encouraged the authors to continue their work, the result being the present book, Volume 2, a sequel to Volume 1. We mention that Volume 1 is a revised, extended and updated translation of the book Cauchyjev raeun ostataka sa primenama published in Serbian by Nau~na knjiga, Belgrade in 1978, whereas the greater part of Volume 2 is based upon the second Serbian edition of the mentioned book from 1991. Chapter 1 is introductory while Chapters 2 - 6 are supplements to the corresponding chapters of Volume 1. They mainly contain results missed during the preparation of Volume 1 and also some new results published after 1982. Besides, certain topics which were only briefly mentioned in Volume 1 are treated here in more detail.




Representation of Lie Groups and Special Functions


Book Description

In 1991-1993 our three-volume book "Representation of Lie Groups and Spe cial Functions" was published. When we started to write that book (in 1983), editors of "Kluwer Academic Publishers" expressed their wish for the book to be of encyclopaedic type on the subject. Interrelations between representations of Lie groups and special functions are very wide. This width can be explained by existence of different types of Lie groups and by richness of the theory of their rep resentations. This is why the book, mentioned above, spread to three big volumes. Influence of representations of Lie groups and Lie algebras upon the theory of special functions is lasting. This theory is developing further and methods of the representation theory are of great importance in this development. When the book "Representation of Lie Groups and Special Functions" ,vol. 1-3, was under preparation, new directions of the theory of special functions, connected with group representations, appeared. New important results were discovered in the traditional directions. This impelled us to write a continuation of our three-volume book on relationship between representations and special functions. The result of our further work is the present book. The three-volume book, published before, was devoted mainly to studying classical special functions and orthogonal polynomials by means of matrix elements, Clebsch-Gordan and Racah coefficients of group representations and to generaliza tions of classical special functions that were dictated by matrix elements of repre sentations.




Nonlinear Symmetries and Nonlinear Equations


Book Description

The study of (nonlinear) dift"erential equations was S. Lie's motivation when he created what is now known as Lie groups and Lie algebras; nevertheless, although Lie group and algebra theory flourished and was applied to a number of dift"erent physical situations -up to the point that a lot, if not most, of current fun damental elementary particles physics is actually (physical interpretation of) group theory -the application of symmetry methods to dift"erential equations remained a sleeping beauty for many, many years. The main reason for this lies probably in a fact that is quite clear to any beginner in the field. Namely, the formidable comple:rity ofthe (algebraic, not numerical!) computations involved in Lie method. I think this does not account completely for this oblivion: in other fields of Physics very hard analytical computations have been worked through; anyway, one easily understands that systems of dOlens of coupled PDEs do not seem very attractive, nor a very practical computational tool.




Differential Equations on Complex Manifolds


Book Description

The present monograph is devoted to the complex theory of differential equations. Not yet a handbook, neither a simple collection of articles, the book is a first attempt to present a more or less detailed exposition of a young but promising branch of mathematics, that is, the complex theory of partial differential equations. Let us try to describe the framework of this theory. First, simple examples show that solutions of differential equations are, as a rule, ramifying analytic functions. and, hence, are not regular near points of their ramification. Second, bearing in mind these important properties of solutions, we shall try to describe the method solving our problem. Surely, one has first to consider differential equations with constant coefficients. The apparatus solving such problems is well-known in the real the ory of differential equations: this is the Fourier transformation. Un fortunately, such a transformation had not yet been constructed for complex-analytic functions and the authors had to construct by them selves. This transformation is, of course, the key notion of the whole theory.