Applied Mathematics and Modeling for Chemical Engineers, Multi-Volume Set


Book Description

Understand the fundamentals of applied mathematics with this up-to-date introduction Applied mathematics is the use of mathematical concepts and methods in various applied or practical areas, including engineering, computer science, and more. As engineering science expands, the ability to work from mathematical principles to solve and understand equations has become an ever more critical component of engineering fields. New engineering processes and materials place ever-increasing mathematical demands on new generations of engineers, who are looking more and more to applied mathematics for an expanded toolkit. Applied Mathematics and Modeling for Chemical Engineers provides this toolkit in a comprehensive and easy-to-understand introduction. Combining classical analysis of modern mathematics with more modern applications, it offers everything required to assess and solve mathematical problems in chemical engineering. Now updated to reflect contemporary best practices and novel applications, this guide promises to situate readers in a 21st century chemical engineering field in which direct knowledge of mathematics is essential. Readers of the third edition of Applied Mathematics and Modeling for Chemical Engineers will also find: Detailed treatment of ordinary differential equations (ODEs) and partial differential equations (PDEs) and their solutions New material concerning approximate solution methods like perturbation techniques and elementary numerical solutions Two new chapters dealing with Linear Algebra and Applied Statistics Applied Mathematics and Modeling for Chemical Engineers is ideal for graduate and advanced undergraduate students in chemical engineering and related fields, as well as instructors and researchers seeking a handy reference.




Applied Mathematics And Modeling For Chemical Engineers


Book Description

Enables chemical engineers to use mathematics to solve common on-the-job problems With its clear explanations, examples, and problem sets, Applied Mathematics and Modeling for Chemical Engineers has enabled thousands of chemical engineers to apply mathematical principles to successfully solve practical problems. The book introduces traditional techniques to solve ordinary differential equations as well as analytical methods to deal with important classes of finite-difference equations. It then explores techniques for solving partial differential equations from classical methods to finite-transforms, culminating with??numerical methods??including orthogonal collocation. This Second Edition demonstrates how classical mathematics solves a broad range of new applications that have arisen since the publication of the acclaimed first edition. Readers will find new materials and problems dealing with such topics as: Brain implant drug delivery Carbon dioxide storage Chemical reactions in nanotubes Dissolution of pills and pharmaceutical capsules Honeycomb reactors used in catalytic converters New models of physical phenomena such as bubble coalescence Like the first edition, this Second Edition provides plenty of worked examples that explain each step on the way to finding a problem's solution. Homework problems at the end of each chapter are designed to encourage readers to more deeply examine the underlying logic of the mathematical techniques used to arrive at the answers. Readers can refer to the references, also at the end of each chapter, to explore individual topics in greater depth. Finally, the text's appendices provide additional information on numerical methods for solving algebraic equations as well as a detailed explanation of numerical integration algorithms. Applied Mathematics and Modeling for Chemical Engineers is recommended for all students in chemical engineering as well as professional chemical engineers who want to improve their ability to use mathematics to solve common on-the-job problems.




Applied Mathematical Methods for Chemical Engineers


Book Description

Focusing on the application of mathematics to chemical engineering, Applied Mathematical Methods for Chemical Engineers, Second Edition addresses the setup and verification of mathematical models using experimental or other independently derived data. An expanded and updated version of its well-respected predecessor, this book uses worked




Applied Mathematics and Modeling for Chemical Engineers


Book Description

This book combines the classical analysis and modern applications of applied mathematics for chemical engineers. The book introduces traditional techniques for solving ordinary differential equations (ODEs), adding new material on approximate solution methods such as perturbation techniques and elementary numerical solutions. It also includes analytical methods to deal with important classes of finite-difference equations. The last half discusses numerical solution techniques and partial differential equations (PDEs). The reader will then be equipped to apply mathematics in the formulation of problems in chemical engineering. Like the first edition, there are many examples provided as homework and worked examples.




Applied Chemistry and Chemical Engineering, Volume 3


Book Description

Understanding mathematical modeling is fundamental in chemical engineering. This book reviews, introduces, and develops the mathematical models that are most frequently encountered in sophisticated chemical engineering domains. The volume provides a collection of models illustrating the power and richness of the mathematical sciences in supplying insight into the operation of important real-world systems. It fills a gap within modeling texts, focusing on applications across a broad range of disciplines. The first part of the book discusses the general components of the modeling process and highlights the potential of modeling in the production of nanofibers. These chapters discuss the general components of the modeling process and the evolutionary nature of successful model building in the electrospinning process. Electrospinning is the most versatile technique for the preparation of continuous nanofibers obtained from numerous materials. This section of book summarizes the state-of-the art in electrospinning as well as updates on theoretical aspects and applications. Part 2 of the book presents a selection of special topics on issues in applied chemistry and chemical engineering, including nanocomposite coating processes by electrocodeposition method, entropic factors conformational interactions, and the application of artificial neural network and meta-heuristic algorithms. This volume covers a wide range of topics in mathematical modeling, computational science, and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines.




Applied Mathematical Methods for Chemical Engineers, Third Edition


Book Description

This book focuses on the application of mathematics to chemical engineering and addresses the setup and verification of mathematical models using experimental or other independently derived data. An expanded and updated version of its well-respected predecessor, this book uses worked examples to illustrate several mathematical methods that are essential in successfully solving process engineering problems. The book provides an introduction to differential equations common to chemical engineering, followed by examples of first-order and linear second-order ordinary differential equations. Later chapters examine Sturm–Liouville problems, Fourier series, integrals, linear partial differential equations, and regular perturbation.




Applied Chemistry and Chemical Engineering, Volume 1


Book Description

This new book brings together innovative research, new concepts, and novel developments in the application of informatics tools for applied chemistry and computer science. It presents a modern approach to modeling and calculation and also looks at experimental design in applied chemistry and chemical engineering. The volume discusses the developments of advanced chemical products and respective tools to characterize and predict the chemical material properties and behavior. Providing numerous comparisons of different methods with one another and with different experiments, not only does this book summarize the classical theories, but it also exhibits their engineering applications in response to the current key issues. Recent trends in several areas of chemistry and chemical engineering science, which have important application to practice, are discussed. Applied Chemistry and Chemical Engineering: Volume 1: Mathematical and Analytical Techniques provides valuable information for chemical engineers and researchers as well as for graduate students. It demonstrates the progress and promise for developing chemical materials that seem capable of moving this field from laboratory-scale prototypes to actual industrial applications. Volume 2 will focus principles and methodologies in applied chemistry and chemical engineering.




Numerical Methods and Modeling for Chemical Engineers


Book Description

"Geared toward advanced undergraduates or graduate students of chemical engineering studying applied mathematics, this text introduces the quantitative treatment of differential equations arising from modeling physical phenomena in chemical engineering. Coverage includes topics such as ODE-IVPs, placing emphasis on numerical methods and modeling implemented in commercial mathematical software available in 1985"--




Applied Mathematics And Modeling For Chemical Engineers


Book Description

This Second Edition of the go-to reference combines the classical analysis and modern applications of applied mathematics for chemical engineers. The book introduces traditional techniques for solving ordinary differential equations (ODEs), adding new material on approximate solution methods such as perturbation techniques and elementary numerical solutions. It also includes analytical methods to deal with important classes of finite-difference equations. The last half discusses numerical solution techniques and partial differential equations (PDEs). The reader will then be equipped to apply mathematics in the formulation of problems in chemical engineering. Like the first edition, there are many examples provided as homework and worked examples.




Mathematical Methods in Chemical and Biological Engineering


Book Description

Mathematical Methods in Chemical and Biological Engineering describes basic to moderately advanced mathematical techniques useful for shaping the model-based analysis of chemical and biological engineering systems. Covering an ideal balance of basic mathematical principles and applications to physico-chemical problems, this book presents examples drawn from recent scientific and technical literature on chemical engineering, biological and biomedical engineering, food processing, and a variety of diffusional problems to demonstrate the real-world value of the mathematical methods. Emphasis is placed on the background and physical understanding of the problems to prepare students for future challenging and innovative applications.