Applied Mathematics for Science and Engineering


Book Description

Prepare students for success in using applied mathematics for engineering practice and post-graduate studies Moves from one mathematical method to the next sustaining reader interest and easing the application of the techniques Uses different examples from chemical, civil, mechanical and various other engineering fields Based on a decade’s worth of the authors lecture notes detailing the topic of applied mathematics for scientists and engineers Concisely writing with numerous examples provided including historical perspectives as well as a solutions manual for academic adopters




Applied Mathematics in Aerospace Science and Engineering


Book Description

This book contains the proceedings ofthe meeting on "Applied Mathematics in the Aerospace Field," held in Erice, Sicily, Italy from September 3 to September 10, 1991. The occasion of the meeting was the 12th Course of the School of Mathematics "Guido Stampacchia," directed by Professor Franco Giannessi of the University of Pisa. The school is affiliated with the International Center for Scientific Culture "Ettore Majorana," which is directed by Professor Antonino Zichichi of the University of Bologna. The objective of the course was to give a perspective on the state-of the-art and research trends concerning the application of mathematics to aerospace science and engineering. The course was structured with invited lectures and seminars concerning fundamental aspects of differential equa tions, mathematical programming, optimal control, numerical methods, per turbation methods, and variational methods occurring in flight mechanics, astrodynamics, guidance, control, aircraft design, fluid mechanics, rarefied gas dynamics, and solid mechanics. The book includes 20 chapters by 23 contributors from the United States, Germany, and Italy and is intended to be an important reference work on the application of mathematics to the aerospace field. It reflects the belief of the course directors that strong interaction between mathematics and engineering is beneficial, indeed essential, to progresses in both areas.




Handbook of Mathematics for Engineers and Scientists


Book Description

Covering the main fields of mathematics, this handbook focuses on the methods used for obtaining solutions of various classes of mathematical equations that underlie the mathematical modeling of numerous phenomena and processes in science and technology. The authors describe formulas, methods, equations, and solutions that are frequently used in scientific and engineering applications and present classical as well as newer solution methods for various mathematical equations. The book supplies numerous examples, graphs, figures, and diagrams and contains many results in tabular form, including finite sums and series and exact solutions of differential, integral, and functional equations.




Methods of Applied Mathematics for Engineers and Scientists


Book Description

This engineering mathematics textbook is rich with examples, applications and exercises, and emphasises applying matrices.




Mathematical Physics


Book Description

What sets this volume apart from other mathematics texts is its emphasis on mathematical tools commonly used by scientists and engineers to solve real-world problems. Using a unique approach, it covers intermediate and advanced material in a manner appropriate for undergraduate students. Based on author Bruce Kusse's course at the Department of Applied and Engineering Physics at Cornell University, Mathematical Physics begins with essentials such as vector and tensor algebra, curvilinear coordinate systems, complex variables, Fourier series, Fourier and Laplace transforms, differential and integral equations, and solutions to Laplace's equations. The book moves on to explain complex topics that often fall through the cracks in undergraduate programs, including the Dirac delta-function, multivalued complex functions using branch cuts, branch points and Riemann sheets, contravariant and covariant tensors, and an introduction to group theory. This expanded second edition contains a new appendix on the calculus of variation -- a valuable addition to the already superb collection of topics on offer. This is an ideal text for upper-level undergraduates in physics, applied physics, physical chemistry, biophysics, and all areas of engineering. It allows physics professors to prepare students for a wide range of employment in science and engineering and makes an excellent reference for scientists and engineers in industry. Worked out examples appear throughout the book and exercises follow every chapter. Solutions to the odd-numbered exercises are available for lecturers at www.wiley-vch.de/textbooks/.




Applied Mathematics for Engineers and Physicists


Book Description

Suitable for advanced courses in applied mathematics, this text covers analysis of lumped parameter systems, distributed parameter systems, and important areas of applied mathematics. Answers to selected problems. 1970 edition.




Advanced Topics in Applied Mathematics


Book Description

This book is ideal for engineering, physical science and applied mathematics students and professionals who want to enhance their mathematical knowledge. Advanced Topics in Applied Mathematics covers four essential applied mathematics topics: Green's functions, integral equations, Fourier transforms and Laplace transforms. Also included is a useful discussion of topics such as the Wiener–Hopf method, finite Hilbert transforms, the Cagniard–De Hoop method and the proper orthogonal decomposition. This book reflects Sudhakar Nair's long classroom experience and includes numerous examples of differential and integral equations from engineering and physics to illustrate the solution procedures. The text includes exercise sets at the end of each chapter and a solutions manual, which is available for instructors.




Mathematics Applied to Engineering


Book Description

Mathematics Applied in Engineering presents a wide array of applied mathematical techniques for an equally wide range of engineering applications, covering areas such as acoustics, system engineering, optimization, mechanical engineering, and reliability engineering. Mathematics acts as a foundation for new advances, as engineering evolves and develops. This book will be of great interest to postgraduate and senior undergraduate students, and researchers, in engineering and mathematics, as well as to engineers, policy makers, and scientists involved in the application of mathematics in engineering. Covers many mathematical techniques for robotics, computer science, mechanical engineering, HCI and machinability Describes different algorithms Explains different modeling techniques and simulations




Dictionary of Applied Math for Engineers and Scientists


Book Description

Despite the seemingly close connections between mathematics and other scientific and engineering fields, practical explanations intelligible to those who are not primarily mathematicians are even more difficult to find. The Dictionary of Applied Mathematics for Engineers and Scientists fills that void. It contains authoritative yet accessible defin