Applied Natural Language Processing in the Enterprise


Book Description

NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production




NLP Workbook


Book Description

Neuro-Linguistic Programming (NLP) studies brilliance and quality—how outstanding individuals and organizations get their outstanding results. Joseph O’Conner, a leading international NLP trainer and co-author of the bestselling Introducing NLP, offers a step-by-step guide to learning the NLP methods and techniques to help you become the person you want to be in the NLP Workbook. The NLP Workbook is a complete guide to NLP that includes: How to create and achieve outcomes How to choose your emotional state and shift thinking Meta modeling your own internal dialogue All of the basic NLP techniques and training exercises An Action Plan with exercises and suggestions for skill-building O’Conner discusses a range of topics from rapport and trust, and how to visualize, to negotiation skills, mental rehearsal and coaching. NLP Workbook is a book for everyone and anyone interested in NLP. The neophyte will find definitions, examples, and a step-by-step entry into learning how to use NLP, and trainers will discover many new ideas for NLP training.




Applied Nlp Workbook


Book Description

Many people have sought to define neurolinguistic programmingotherwise known as NLP. John Grinder said, NLP is the epistemology of returning to what we have lost a state of grace. Richard Bandler said, NLP is an attitude which is an insatiable curiosity about human beings with a methodology that leaves behind it a trail of techniques. And Robert Dilts said, NLP is whatever works. No matter how you define it, NLP has the potential to transform your lifeand Ana Marcela Duarte, a certified master practitioner in NLP, explains what it is and how to use it in this workbook. Learn how to: use various techniques to develop rapport with people; look at eye patterns to determine if someone is being truthful; do things that unsuccessful people fail to do; empower yourself with seven easy steps; and master the art of storytelling to achieve your goals. Many of the worlds most successful people have used NLP to achieve their dreams for some time, but the public has remained in the dark. With the insights and exercises in this workbook, youll find that you, too, can take massive action to change your life for the better with NLP.




Practical Natural Language Processing


Book Description

Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective




Real-World Natural Language Processing


Book Description

Voice assistants, automated customer service agents, and other cutting-edge human-to-computer interactions rely on accurately interpreting language as it is written and spoken. Real-world Natural Language Processing teaches you how to create practical NLP applications without getting bogged down in complex language theory and the mathematics of deep learning. In this engaging book, you''ll explore the core tools and techniques required to build a huge range of powerful NLP apps. about the technology Natural language processing is the part of AI dedicated to understanding and generating human text and speech. NLP covers a wide range of algorithms and tasks, from classic functions such as spell checkers, machine translation, and search engines to emerging innovations like chatbots, voice assistants, and automatic text summarization. Wherever there is text, NLP can be useful for extracting meaning and bridging the gap between humans and machines. about the book Real-world Natural Language Processing teaches you how to create practical NLP applications using Python and open source NLP libraries such as AllenNLP and Fairseq. In this practical guide, you''ll begin by creating a complete sentiment analyzer, then dive deep into each component to unlock the building blocks you''ll use in all different kinds of NLP programs. By the time you''re done, you''ll have the skills to create named entity taggers, machine translation systems, spelling correctors, and language generation systems. what''s inside Design, develop, and deploy basic NLP applications NLP libraries such as AllenNLP and Fairseq Advanced NLP concepts such as attention and transfer learning about the reader Aimed at intermediate Python programmers. No mathematical or machine learning knowledge required. about the author Masato Hagiwara received his computer science PhD from Nagoya University in 2009, focusing on Natural Language Processing and machine learning. He has interned at Google and Microsoft Research, and worked at Baidu Japan, Duolingo, and Rakuten Institute of Technology. He now runs his own consultancy business advising clients, including startups and research institutions.




NLP Solutions


Book Description

In this sequel to her best-selling introduction NLP at Work, Sue Knight focuses on how to model what really works in business to make it really work for you




Introduction to Natural Language Processing


Book Description

A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.




Natural Language Processing with Python


Book Description

This book offers a highly accessible introduction to natural language processing, the field that supports a variety of language technologies, from predictive text and email filtering to automatic summarization and translation. With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication. Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligence This book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.




NLP Coaching


Book Description

NLP (Neuro-Linguistic Programming) is believed by many to be a powerful set of tools for facilitating change and enhancing performance. Yet, despite the success stories and proliferation of courses, there is still much skepticism about the validity and effectiveness of NLP. In NLP Coaching Susie Linder-Pelz brings, for the first time, an evidence-based perspective to this coaching methodology. She explains how and where NLP coaching is used, examines its links to established principles and practices, and questions aspects of NLP where the empirical evidence is missing. She reviews recent developments in NLP-based coaching practice and proposes a specific research agenda that will move NLP coaching towards an evidence-based approach. NLP Coaching provides numerous case studies and real-life examples which show how NLP assists personal, professional, team, leadership and organizational development. The book includes contributions from leaders in the field: Andrew Bryant, Michelle Duval, Joseph O'Connor, Paul Tosey and Lisa Wake.




Applied Text Analysis with Python


Book Description

From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist’s approach to building language-aware products with applied machine learning. You’ll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you’ll be equipped with practical methods to solve any number of complex real-world problems. Preprocess and vectorize text into high-dimensional feature representations Perform document classification and topic modeling Steer the model selection process with visual diagnostics Extract key phrases, named entities, and graph structures to reason about data in text Build a dialog framework to enable chatbots and language-driven interaction Use Spark to scale processing power and neural networks to scale model complexity