Applied Digital Optics


Book Description

Miniaturization and mass replications have begun to lead the optical industry in the transition from traditional analog to novel digital optics. As digital optics enter the realm of mainstream technology through the worldwide sale of consumer electronic devices, this timely book aims to present the topic of digital optics in a unified way. Ranging from micro-optics to nanophotonics, and design to fabrication through to integration in final products, it reviews the various physical implementations of digital optics in either micro-refractives, waveguide (planar lightwave chips), diffractive and hybrid optics or sub-wavelength structures (resonant gratings, surface plasmons, photonic crystals and metamaterials). Finally, it presents a comprehensive list of industrial and commercial applications that are taking advantage of the unique properties of digital optics. Applied Digital Optics is aimed primarily at optical engineers and product development and technical marketing managers; it is also of interest to graduate-level photonics students and micro-optic foundries. Helps optical engineers review and choose the appropriate software tools to design, model and generate fabrication files. Gives product managers access to an exhaustive list of applications available in today’s market for integrating such digital optics, as well as where the next potential application of digital optics might be. Provides a broad view for technical marketing managers in all aspects of digital optics, and how such optics can be classified. Explains the numerical implementation of optical design and modelling techniques. Enables micro-optics foundries to integrate the latest fabrication and replication techniques, and accordingly fine tune their own fabrication processes.




Applied Nonlinear Optics


Book Description

Directed toward physicists and engineers interested in the device applications enabled by nonlinear optics, this text is suitable for advanced undergraduates and graduate students. Its content is presented entirely on a classical basis and requires only an elementary knowledge of quantum mechanics. The authors demonstrate how real laboratory situations can diverge from ideal theory, acquainting readers with the kinds of problems common to construction of a nonlinear device. They also offer a detailed discussion of the practical problems and characteristics of nonlinear materials, as well as the selection procedures necessary to ensure the use of good material. Their treatment begins with an introduction to the theories of linear and nonlinear optics, along with the basic ideas behind them. Succeeding chapters explore phase matching and nonlinear materials, followed by detailed treatments of second-harmonic generation, parametric up-conversion, and optical parametric amplification and oscillation. Appendixes offer a comprehensive list of materials and their properties; the text concludes with references and an index.




Applied Optics Fundamentals and Device Applications


Book Description

How does the field of optical engineering impact biotechnology? Perhaps for the first time, Applied Optics Fundamentals and Device Applications: Nano, MOEMS, and Biotechnology answers that question directly by integrating coverage of the many disciplines and applications involved in optical engineering, and then examining their applications in nanobiotechnology. Written by a senior U.S. Army research scientist and pioneer in the field of optical engineering, this book addresses the exponential growth in materials, applications, and cross-functional relevance of the many convergent disciplines making optical engineering possible, including nanotechnology, MEMS, (MOEMS), and biotechnology. Integrates Coverage of MOEMS, Optics, and Nanobiotechnology—and Their Market Applications Providing an unprecedented interdisciplinary perspective of optics technology, this book describes everything from core principles and fundamental relationships, to emerging technologies and practical application of devices and systems—including fiber-optic sensors, integrated and electro-optics, and specialized military applications. The author places special emphasis on: Fiber sensor systems Electro-optics and acousto-optics Optical computing and signal processing Optical device performance Thin film magnetic memory MEMS, MOEMS, nano- and bionanotechnologies Optical diagnostics and imaging Integrated optics Design constraints for materials, manufacturing, and application space Bridging the technology gaps between interrelated fields, this reference is a powerful tool for students, engineers and scientists in the electrical, chemical, mechanical, biological, aerospace, materials, and optics fields. Its value also extends to applied physicists and professionals interested in the relationships between emerging technologies and cross-disciplinary opportunities. Author Mark A. Mentzer is a pioneer in the field of optical engineering. He is a senior research scientist at the U.S. Army Research Laboratory in Maryland. Much of his current work involves extending the fields of optical engineering and solid state physics into the realm of biochemistry and molecular biology, as well as structured research in biophotonics.




Fundamentals of Photonics


Book Description

Fundamentals of Photonics A complete, thoroughly updated, full-color third edition Fundamentals of Photonics, Third Edition is a self-contained and up-to-date introductory-level textbook that thoroughly surveys this rapidly expanding area of engineering and applied physics. Featuring a blend of theory and applications, coverage includes detailed accounts of the primary theories of light, including ray optics, wave optics, electromagnetic optics, and photon optics, as well as the interaction of light and matter. Presented at increasing levels of complexity, preliminary sections build toward more advanced topics, such as Fourier optics and holography, photonic-crystal optics, guided-wave and fiber optics, LEDs and lasers, acousto-optic and electro-optic devices, nonlinear optical devices, ultrafast optics, optical interconnects and switches, and optical fiber communications. The third edition features an entirely new chapter on the optics of metals and plasmonic devices. Each chapter contains highlighted equations, exercises, problems, summaries, and selected reading lists. Examples of real systems are included to emphasize the concepts governing applications of current interest. Each of the twenty-four chapters of the second edition has been thoroughly updated.




Building Electro-Optical Systems


Book Description

Praise for the First Edition "Now a new laboratory bible for optics researchers has joined the list: it is Phil Hobbs's Building Electro-Optical Systems: Making It All Work." —Tony Siegman, Optics & Photonics News Building a modern electro-optical instrument may be the most interdisciplinary job in all of engineering. Be it a DVD player or a laboratory one-off, it involves physics, electrical engineering, optical engineering, and computer science interacting in complex ways. This book will help all kinds of technical people sort through the complexity and build electro-optical systems that just work, with maximum insight and minimum trial and error. Written in an engaging and conversational style, this Second Edition has been updated and expanded over the previous edition to reflect technical advances and a great many conversations with working designers. Key features of this new edition include: Expanded coverage of detectors, lasers, photon budgets, signal processing scheme planning, and front ends Coverage of everything from basic theory and measurement principles to design debugging and integration of optical and electronic systems Supplementary material is available on an ftp site, including an additional chapter on thermal Control and Chapter problems highly relevant to real-world design Extensive coverage of high performance optical detection and laser noise cancellation Each chapter is full of useful lore from the author's years of experience building advanced instruments. For more background, an appendix lists 100 good books in all relevant areas, introductory as well as advanced. Building Electro-Optical Systems: Making It All Work, Second Edition is essential reading for researchers, students, and professionals who have systems to build.




Applied Optics and Optical Design


Book Description

Classic work presents Conrady's complete system of optical design. Part One covers all ordinary ray-tracing methods, together with the complete theory of primary aberration and as much of higher aberration as is needed for the design of telescopes, low-power microscopes, and simple optical systems.




Applied Photographic Optics


Book Description

Selected by the American Library Association's 'Choice' magazine as "best technical book", the first edition of this book soon established itself as the standard reference work on all aspects of photographic lenses and associated optical systems. This is unsurprising, as Sidney Ray provides a complete, comprehensive reference source for anyone wanting information on photographic lenses, from the student to the practitioner or specialist working with visual and digital media worldwide. This third edition has been fully revised and expanded to include the rapid progress in the last decade in optical technology and advances in relevant electronic and digital forms of imaging. Every chapter has been revised and expanded using new figures and photographs as appropriate, as well as extended bibliographies. New chapters include details of filters, measurements from images and the optical systems of digital cameras. Details of electronic and digital imaging have been integrated throughout. More information is given on topics such as aspherics, diffractive optics, ED glasses, image stabilization, optical technology, video projection and new types of lenses. A selection of the contents includes chapters on: optical theory, aberrations, auto focus, lens testing, depth of field, development of photographic lenses, general properties of lenses, wide-angle lenses, telephoto lenses, video lenses, viewfinder systems, camera movements, projection systems and 3-D systems.




Applied Optics and Optical Engineering V6


Book Description

Applied Optics and Optical Engineering, Volume VI is an 11-chapter text that covers the principles and design of some optical devices and systems. The first three chapters deal with the principles, mode of operation, and application of several types of lasers, such as solid-state, gas, and semiconductor diode lasers. These topics are followed by the presentation of the physics and engineering of acousto-optic systems and coherent light valves. A chapter provides the fundamental considerations of the principles of scanning devices and systems, including the light beam, the scanning motions and patterns, and optical, mechanical, and electronic engineering considerations. The discussion then shifts to the potential applications of coherent optical processing techniques in mapping and the infrared detectors to the optical engineer. The remaining chapters examine the principles and applications of optical holography, image intensifiers, and fiber optics. This book is of great benefit to applied scientists and engineers who are interested in the conceptualization and design of new instruments and systems of coherent optics.




Applied Charged Particle Optics


Book Description

Written by a pioneer in the field, this overview of charged particle optics provides a solid introduction to the subject area for all physicists wishing to design their own apparatus or better understand the instruments with which they work. It begins by introducing electrostatic lenses and fields used for acceleration, focusing and deflection of ions or electrons. Subsequent chapters give detailed descriptions of electrostatic deflection elements, uniform and non-uniform magnetic sector fields, image aberrations, and, finally, fringe field confinement.




Applied Optics and Optical Engineering V7


Book Description

Applied Optics and Optical Engineering, Volume VII discusses the developments and improvements in some areas of applied optics. This book contains eight chapters that tackle the concepts, techniques, and process vital to optical engineering design. This book deals first with the luminous properties and spectral radiance of incoherent light sources, followed by an overview of plastic optical components. The subsequent chapters describe the refractive and reflective characteristics of various optical materials, such as optical glass, crystals, and vitreous silica glass. These topics are followed by a discussion on the macro- and micro-image properties and signal-to-noise transfer during photographic recording, which are crucial to the proper utilization of photographic materials in optical applications. This volume further provides the tools required for the analysis of the propagation of laser beams. A chapter explores the scalar and vector scattering theories for light scattering calculation of correlated surface microirregularities. The final chapter emphasizes the significant role of adaptive optical techniques for wave-front correction and removal of deleterious phase perturbations. This book will be greatly appreciated by applied scientists and optical engineers.