Applied Orbit Perturbation and Maintenance


Book Description

Since the start of the space age more than 50 years ago, various space technology applications - including communication, navigation, and remote sensing - have advanced significantly. To meet the challenges in each application category, special orbits such as geo-stationary, semi-synchronous, Molniya, sun-synchronous, and frozen have been invented or selected. Although a good number of texts on the principles and applications of astrodynamics have been published, a book is needed to summarize the perturbation theories and control, or station keeping, algorithms for understanding the dynamics, stability, and maintenance of those orbits. Applied Orbit Perturbations and Maintenance was written to meet that need. It summarizes, in appropriate technical and mathematical detail, perturbation theories and station keeping algorithms for various types of mission orbits and constellations. Space mission designers/analysts and systems engineers will put this book to great use.




Introduction to Orbital Perturbations


Book Description

This textbook provides details of the derivation of Lagrange's planetary equations and of the closely related Gauss's variational equations, thereby covering a sorely needed topic in existing literature. Analytical solutions can help verify the results of numerical work, giving one confidence that his or her analysis is correct. The authors—all experienced experts in astrodynamics and space missions—take on the massive derivation problem step by step in order to help readers identify and understand possible analytical solutions in their own endeavors. The stages are elementary yet rigorous; suggested student research project topics are provided. After deriving the variational equations, the authors apply them to many interesting problems, including the Earth-Moon system, the effect of an oblate planet, the perturbation of Mercury's orbit due to General Relativity, and the perturbation due to atmospheric drag. Along the way, they introduce several useful techniques such as averaging, Poincaré's method of small parameters, and variation of parameters. In the end, this textbook will help students, practicing engineers, and professionals across the fields of astrodynamics, astronomy, dynamics, physics, planetary science, spacecraft missions, and others. “An extensive, detailed, yet still easy-to-follow presentation of the field of orbital perturbations.” - Prof. Hanspeter Schaub, Smead Aerospace Engineering Sciences Department, University of Colorado, Boulder “This book, based on decades of teaching experience, is an invaluable resource for aerospace engineering students and practitioners alike who need an in-depth understanding of the equations they use.” - Dr. Jean Albert Kéchichian, The Aerospace Corporation, Retired “Today we look at perturbations through the lens of the modern computer. But knowing the why and the how is equally important. In this well organized and thorough compendium of equations and derivations, the authors bring some of the relevant gems from the past back into the contemporary literature.” - Dr. David A Vallado, Senior Research Astrodynamicist, COMSPOC “The book presentation is with the thoroughness that one always sees with these authors. Their theoretical development is followed with a set of Earth orbiting and Solar System examples demonstrating the application of Lagrange’s planetary equations for systems with both conservative and nonconservative forces, some of which are not seen in orbital mechanics books.” - Prof. Kyle T. Alfriend, University Distinguished Professor, Texas A&M University




Applied Nonsingular Astrodynamics


Book Description

This essential book is the first comprehensive exposition in the area of optimal low-thrust orbit transfer using non-singular variables.




Orbital Mechanics


Book Description

Contributors to the third edition of this text include scientists and engineers from The Aerospace Corporation, an organization in the U.S. space program. Intended for aerospace professionals and graduate students, the text covers the theory and application of earth orbits and interplanetary trajectories, orbital maneuvers, space rendezvous, orbit perturbations, and collision hazards associated with space debris. The revised edition includes recent developments in space exploration and new developments in space debris. The text is now accompanied by a CD-ROM software package illustrating text material and providing solutions to selected problems. Annotation copyrighted by Book News, Inc., Portland, OR




New Frontiers of Celestial Mechanics: Theory and Applications


Book Description

This volume contains the detailed text of the major lectures delivered during the I-CELMECH Training School 2020 held in Milan (Italy). The school aimed to present a contemporary review of recent results in the field of celestial mechanics, with special emphasis on theoretical aspects. The stability of the Solar System, the rotations of celestial bodies and orbit determination, as well as the novel scientific needs raised by the discovery of exoplanetary systems, the management of the space debris problem and the modern space mission design are some of the fundamental problems in the modern developments of celestial mechanics. This book covers different topics, such as Hamiltonian normal forms, the three-body problem, the Euler (or two-centre) problem, conservative and dissipative standard maps and spin-orbit problems, rotational dynamics of extended bodies, Arnold diffusion, orbit determination, space debris, Fast Lyapunov Indicators (FLI), transit orbits and answer to a crucial question, how did Kepler discover his celebrated laws? Thus, the book is a valuable resource for graduate students and researchers in the field of celestial mechanics and aerospace engineering.




Hamiltonian Perturbation Solutions for Spacecraft Orbit Prediction


Book Description

Analytical solutions to the orbital motion of celestial objects have been nowadays mostly replaced by numerical solutions, but they are still irreplaceable whenever speed is to be preferred to accuracy, or to simplify a dynamical model. In this book, the most common orbital perturbations problems are discussed according to the Lie transforms method, which is the de facto standard in analytical orbital motion calculations.




Astronautics


Book Description

As a crewmember of the D-2 shuttle mission and a full professor of astronautics at the Technical University in Munich, Ulrich Walter is an acknowledged expert in the field. He is also the author of a number of popular science books on space flight. The second edition of this textbook is based on extensive teaching and his work with students, backed by numerous examples drawn from his own experience. With its end-of-chapter examples and problems, this work is suitable for graduate level or even undergraduate courses in space flight, as well as for professionals working in the space industry.




Orbital Mechanics and Astrodynamics


Book Description

This textbook covers fundamental and advanced topics in orbital mechanics and astrodynamics to expose the student to the basic dynamics of space flight. The engineers and graduate students who read this class-tested text will be able to apply their knowledge to mission design and navigation of space missions. Through highlighting basic, analytic and computer-based methods for designing interplanetary and orbital trajectories, this text provides excellent insight into astronautical techniques and tools. This book is ideal for graduate students in Astronautical or Aerospace Engineering and related fields of study, researchers in space industrial and governmental research and development facilities, as well as researchers in astronautics. This book also: · Illustrates all key concepts with examples · Includes exercises for each chapter · Explains concepts and engineering tools a student or experienced engineer can apply to mission design and navigation of space missions · Covers fundamental principles to expose the student to the basic dynamics of space flight




The Earth-Moon System as a Dynamical Laboratory


Book Description

The Earth-Moon neighborhood is the scene of a large variety of applications that concern asteroids, lunar exploration and space debris in Earth orbit. In particular, recent efforts by the scientific community have focused on the possibility of extending the human operations beyond the radiation belts; of exploiting in-situ resources, either on the lunar surface or on asteroids retrieved to the vicinity of the Earth; and of mitigating the space debris concern by taking advantage of the lunar perturbation. The characteristic dynamics in the cislunar space represents an opportunity for the mission designer, but also a challenge in terms of theoretical understanding and operational control. This Research Topic covers the Earth-Moon dynamics in its complexity and allure, considering the most relevant aspects for both natural and artificial objects, in order to get a new comprehension of the dynamics at stake along with the operational procedures that can handle it.




Orbital Mechanics for Engineering Students


Book Description

Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book. - NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions - NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10 - New examples and homework problems