Applied Parallel Computing


Book Description

The book provides a practical guide to computational scientists and engineers to help advance their research by exploiting the superpower of supercomputers with many processors and complex networks. This book focuses on the design and analysis of basic parallel algorithms, the key components for composing larger packages for a wide range of applications.




Applied Parallel Computing


Book Description

This book constitutes the refereed proceedings of the 7th International Conference on Applied Parallel Computing, PARA 2004, held in June 2004. The 118 revised full papers presented together with five invited lectures and 15 contributed talks were carefully reviewed and selected for inclusion in the proceedings. The papers are organized in topical sections.




Applied Parallel Computing


Book Description

This book constitutes the refereed proceedings of the 7th International Conference on Applied Parallel Computing, PARA 2004, held in June 2004. The 118 revised full papers presented together with five invited lectures and 15 contributed talks were carefully reviewed and selected for inclusion in the proceedings. The papers are organized in topical sections.




Parallel Computing


Book Description

The use of parallel programming and architectures is essential for simulating and solving problems in modern computational practice. There has been rapid progress in microprocessor architecture, interconnection technology and software devel- ment, which are in?uencing directly the rapid growth of parallel and distributed computing. However, in order to make these bene?ts usable in practice, this dev- opment must be accompanied by progress in the design, analysis and application aspects of parallel algorithms. In particular, new approaches from parallel num- ics are important for solving complex computational problems on parallel and/or distributed systems. The contributions to this book are focused on topics most concerned in the trends of today’s parallel computing. These range from parallel algorithmics, progr- ming, tools, network computing to future parallel computing. Particular attention is paid to parallel numerics: linear algebra, differential equations, numerical integ- tion, number theory and their applications in computer simulations, which together form the kernel of the monograph. We expect that the book will be of interest to scientists working on parallel computing, doctoral students, teachers, engineers and mathematicians dealing with numerical applications and computer simulations of natural phenomena.




Introduction to Parallel Computing


Book Description

The constantly increasing demand for more computing power can seem impossible to keep up with. However, multicore processors capable of performing computations in parallel allow computers to tackle ever larger problems in a wide variety of applications. This book provides a comprehensive introduction to parallel computing, discussing theoretical issues such as the fundamentals of concurrent processes, models of parallel and distributed computing, and metrics for evaluating and comparing parallel algorithms, as well as practical issues, including methods of designing and implementing shared- and distributed-memory programs, and standards for parallel program implementation, in particular MPI and OpenMP interfaces. Each chapter presents the basics in one place followed by advanced topics, allowing novices and experienced practitioners to quickly find what they need. A glossary and more than 80 exercises with selected solutions aid comprehension. The book is recommended as a text for advanced undergraduate or graduate students and as a reference for practitioners.




Parallel Computing Works!


Book Description

A clear illustration of how parallel computers can be successfully appliedto large-scale scientific computations. This book demonstrates how avariety of applications in physics, biology, mathematics and other scienceswere implemented on real parallel computers to produce new scientificresults. It investigates issues of fine-grained parallelism relevant forfuture supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configuredifferent massively parallel machines, design and implement basic systemsoftware, and develop algorithms for frequently used mathematicalcomputations. They also devise performance models, measure the performancecharacteristics of several computers, and create a high-performancecomputing facility based exclusively on parallel computers. By addressingall issues involved in scientific problem solving, Parallel ComputingWorks! provides valuable insight into computational science for large-scaleparallel architectures. For those in the sciences, the findings reveal theusefulness of an important experimental tool. Anyone in supercomputing andrelated computational fields will gain a new perspective on the potentialcontributions of parallelism. Includes over 30 full-color illustrations.




Applied Parallel Computing


Book Description

This book constitutes the thoroughly refereed post-proceedings of the 8th International Workshop on Applied Parallel Computing, PARA 2006. It covers partial differential equations, parallel scientific computing algorithms, linear algebra, simulation environments, algorithms and applications for blue gene/L, scientific computing tools and applications, parallel search algorithms, peer-to-peer computing, mobility and security, algorithms for single-chip multiprocessors.




Handbook of Parallel Computing and Statistics


Book Description

Technological improvements continue to push back the frontier of processor speed in modern computers. Unfortunately, the computational intensity demanded by modern research problems grows even faster. Parallel computing has emerged as the most successful bridge to this computational gap, and many popular solutions have emerged based on its concepts







Structured Parallel Programming


Book Description

Programming is now parallel programming. Much as structured programming revolutionized traditional serial programming decades ago, a new kind of structured programming, based on patterns, is relevant to parallel programming today. Parallel computing experts and industry insiders Michael McCool, Arch Robison, and James Reinders describe how to design and implement maintainable and efficient parallel algorithms using a pattern-based approach. They present both theory and practice, and give detailed concrete examples using multiple programming models. Examples are primarily given using two of the most popular and cutting edge programming models for parallel programming: Threading Building Blocks, and Cilk Plus. These architecture-independent models enable easy integration into existing applications, preserve investments in existing code, and speed the development of parallel applications. Examples from realistic contexts illustrate patterns and themes in parallel algorithm design that are widely applicable regardless of implementation technology. The patterns-based approach offers structure and insight that developers can apply to a variety of parallel programming models Develops a composable, structured, scalable, and machine-independent approach to parallel computing Includes detailed examples in both Cilk Plus and the latest Threading Building Blocks, which support a wide variety of computers