Applied Photometry, Radiometry, and Measurements of Optical Losses


Book Description

Applied Photometry, Radiometry, and Measurements of Optical Losses reviews and analyzes physical concepts of radiation transfer, providing quantitative foundation for the means of measurements of optical losses, which affect propagation and distribution of light waves in various media and in diverse optical systems and components. The comprehensive analysis of advanced methodologies for low-loss detection is outlined in comparison with the classic photometric and radiometric observations, having a broad range of techniques examined and summarized: from interferometric and calorimetric, resonator and polarization, phase-shift and ring-down decay, wavelength and frequency modulation to pulse separation and resonant, acousto-optic and emissive - subsequently compared to direct and balancing methods for studying free-space and polarization optics, fibers and waveguides. The material is focused on applying optical methods and procedures for evaluation of transparent, reflecting, scattering, absorbing, and aggregated objects, and for determination of power and energy parameters of radiation and color properties of light.




Photometry, Radiometry, and Measurements of Optical Losses


Book Description

The revised 2nd edition of this practical book provides an expanded treatment and comparison of techniques used in advanced optical measurements, guiding its reader from fundamental radiometric and photometric concepts to the state-of-the-art in highly sensitive measurements of optical losses and in spectroscopic detection using coherent laser light and spontaneous radiation. The book describes and compares a broad array of high-sensitivity methods and techniques – from interferometric and/or calorimetric, acousto-optic and resonator or polarization to wavelength- and frequency-modulation, phase-shift and decay time studies, and direct-loss measurements for free-space, fiber- or waveguide-based systems and devices. Updated throughout, the new edition describes novel trends in spectral interferometry, frequency-comb and laser-excitation spectroscopy, reflected in the developments of Raman, Brillouin and FTIR (Fourier Transform Infra-Red) techniques for biomedical research, biotech sensing and detection. It also covers broad practical implementations of time- and frequency-domain terahertz spectroscopy measurements. This book reviews the physical concepts of radiation transfer, providing a quantitative foundation for the means of measurements of optical losses, which affect propagation and distribution of light waves in various media and in diverse optical systems and components. It focuses on the application of optical methods and procedures for the evaluation of transparent, reflecting, scattering, absorbing, and aggregated objects, and for determining the power and energy parameters of radiation and color properties of light. This updated new edition will serve as an up-to-date reference source and practical guide for those using photometric and radiometric techniques.




Optical Properties of Solar Absorber Materials and Structures


Book Description

This book presents an overview of both the theory and experimental methods required to realize high efficiency solar absorber devices. It begins with a historical description of the study of spectrally selective solar absorber materials and structures based on optical principles and methods developed over the past few decades. The optical properties of metals and dielectric materials are addressed to provide the background necessary to achieve high performance of the solar absorber devices as applied in the solar energy field. In the following sections, different types of materials and structures, together with the relevant experimental methods, are discussed for practical construction and fabrication of the solar absorber devices, aiming to maximally harvest the solar energy while at the same time effectively suppressing the heat-emission loss. The optical principles and methods used to evaluate the performance of solar absorber devices with broad applications in different physical conditions are presented. The book is suitable for graduate students in applied physics, and provides a valuable reference for researchers working actively in the field of solar energy.




Military Laser Technology and Systems


Book Description

This new resource provides an insight into the physical principles of the device technology that underpins many laser-based military systems in one form or another. From this knowledge a deeper understanding of the fundamental requirements and the potential performance, as well as limitations of such systems may be assessed, given the appropriate operational parameters. Engineers and students are provided with practical advice on how to evaluate laser devices and systems, operate them safely, and train with them.




Handbook of Nanosensors


Book Description




Fiber-Optic-Based Sensing Systems


Book Description

The need for both intrinsic and extrinsic fiber-optic sensor technologies continues to grow. To meet the demands of this fast-expanding applications-driven market, this book discusses both the latest advances and recent application opportunities along with the basic optical phenomena, with the main emphasis on applying optical knowledge for solving real-life engineering problems. Key features of the book: • Highlights the uniqueness of fiber-optics sensors • Presents state-of-the-art technology in optical fiber sensors • Discusses a variety of fiber-optic topologies • Considers different detection techniques • Gives special attention to distributed fiber-optic sensing systems Basic tools and concepts are presented in the earlier chapters, which are then developed in more detail in the later chapters. The book is organized in seven chapters covering a broad range of fiber-optical sensing phenomena. Written for undergraduate and graduate students who want to broaden their knowledge of fiber-optic sensing system applications for real-life engineering problems, the volume is also valuable for engineers who want to acquire the basic principles of optics, especially fiber-optics.




Blackbody Radiation


Book Description

Shelving Guide: Electrical Engineering In 1900 the great German theoretical physicist Max Planck formulated a correct mathematical description of blackbody radiation. Today, understanding the behavior of a blackbody is of importance to many fields including thermal and infrared systems engineering, pyrometry, astronomy, meteorology, and illumination. This book gives an account of the development of Planck’s equation together with many of the other functions closely related to it. Particular attention is paid to the computational aspects employed in the evaluation of these functions together with the various aids developed to facilitate such calculations. The book is divided into three sections. Section I – Thermal radiation and the blackbody problem are introduced and discussed. Early developments made by experimentalists and theoreticians are examined as they strove to understand the problem of the blackbody. Section II – The development of Planck’s equation is explained as are the all-important fractional functions of the first and second kinds which result when Planck’s equation is integrated between finite limits. A number of theoretical developments are discussed that stem directly from Planck’s law, as are the various computational matters that arise when numerical evaluation is required. Basic elements of radiometry that tie together and use many of the theoretical and computational ideas developed is also presented. Section III – A comprehensive account of the various computational aids such as tables, nomograms, graphs, and radiation slide rules devised and used by generations of scientists and engineers when working with blackbody radiation are presented as are more recent aids utilizing computers and digital devices for real-time computations. Scientists and engineers working in fields utilizing blackbody sources will find this book to be a valuable guide in understanding many of the computational aspects and nuances associated with Planck’s equation and its other closely related functions. With over 700 references, it provides an excellent research resource.




LED Lighting


Book Description

LED Lighting is a self-contained and introductory-level book featuring a blend of theory and applications that thoroughly covers this important interdisciplinary area. Building on the underlying fields of optics, photonics, and vision science, it comprises four parts. PART I is devoted to fundamentals. The behavior of light is described in terms of rays, waves, and photons. Each of these approaches is best suited to a particular set of applications. The properties of blackbody radiation, thermal light, and incandescent light are derived and explained. The essentials of semiconductor physics are set forth, including the operation of junctions and heterojunctions, quantum wells and quantum dots, and organic and perovskite semiconductors. PART II deals with the generation of light in semiconductors, and details the operation and properties of III-V semiconductor devices (MQWLEDs and μLEDs), quantum-dot devices (QLEDs & WOLEDs), organic semiconductor devices (OLEDs, SMOLEDs, PLEDs, & WOLEDs), and perovskite devices (PeLEDs, PPeLEDs, QPeLEDs, & PeWLEDs). PART III focuses on vision and the perception of color, as well as on colorimetry. It delineates radiometric and photometric quantities as well as efficacy and efficiency measures. It relays the significance of metrics often encountered in LED lighting, including the color rendering index (CRI), color temperature (CT), correlated color temperature (CCT), and chromaticity diagram. PART IV is devoted to LED lighting, focusing on its history and salutary features, and on how this modern form of illumination is deployed. It describes the principal components used in LED lighting, including white phosphor-conversion LEDs, chip-on-board (COB) devices, color-mixing LEDs, hybrid devices, LED filaments, retrofit LED lamps, LED luminaires, and OLED light panels. It concludes with a discussion of smart lighting and connected lighting. Each chapter contains highlighted equations, color-coded figures, practical examples, and reading lists.




From Photon to Pixel


Book Description

This second edition of the fully revised and updated From Photon to Pixel presents essential elements in modern digital photographic devices. Our universal infatuation with photography profoundly affects its usage and development. While some sides of photographic “culture” remain wholly unchanged – art photography, journalistic and advertising photography, scientific photography, etc. – new facets emerge: leisure or travel photography, everyday life photography, anecdotal, observational or unusual photography, and microcosm, or micro-community, photography with its culmination in the narcissistic selfie. These new forms combine an often simplified manner of photographing and modern means of instantaneous, remote and mass communication. This book does not extend into the sociological study of photography, instead it explains how the digital camera works by examining in detail each of the components that constitutes it to provide the reader with a preliminary guide into the inner workings of this device.




Organic Electronics


Book Description

This textbook provides a basic understanding of the principles of the field of organic electronics, through to their applications in organic devices. Useful for both students and practitioners, it is a teaching text as well as an invaluable resource that serves as a jumping-off point for those interested in learning, working and innovating in this rapidly growing field. Organics serve as a platform for very low cost and high performance optoelectronic and electronic devices that cover large areas, are lightweight, and can be both flexible and conformable to fit onto irregularly shaped surfaces such as foldable smart phones. Organic electronics is at the core of the global organic light emitting device (OLED) display industry. OLEDs also have potential uses as lighting sources. Other emerging organic electronic applications include organic solar cells, and organic thin film transistors useful in medical and a range of other sensing, memory and logic applications. This book is a product of both one and two semester courses that have been taught over a period of more than two decades. It is divided into two sections. Part I, Foundations, lays down the fundamental principles of the field of organic electronics. It is assumed that the reader has an elementary knowledge of quantum mechanics, and electricity and magnetism. A background knowledge of organic chemistry is not required. Part II, Applications, focuses on organic electronic devices. It begins with a discussion of organic thin film deposition and patterning, followed by chapters on organic light emitters, detectors, and thin film transistors. The last chapter describes several devices and phenomena that are not covered in the previous chapters, since they lie somewhat outside of the current mainstream of the field, but are nevertheless important.