Applied Photovoltaics


Book Description

The new edition of this thoroughly considered textbook provides a reliable, accessible and comprehensive guide for students of photovoltaic applications and renewable energy engineering. Written by a group of award-winning authors it is brimming with information and is carefully designed to meet the needs of its readers. Along with exercises and references at the end of each chapter, it features a set of detailed technical appendices that provide essential equations, data sources and standards. The new edition has been fully updated with the latest information on photovoltaic cells, modules, applications and policy. Starting from basics with 'The Characteristics of Sunlight' the reader is guided step-by-step through semiconductors and p-n junctions; the behaviour of solar cells; cell properties and design; and PV cell interconnection and module fabrication. The book covers stand-alone photovoltaic systems; specific purpose photovoltaic systems; remote area power supply systems; grid-connected photovoltaic systems and water pumping. Applied Photovoltaics is highly illustrated and very accessible, providing the reader with all the information needed to start working with photovoltaics.




Applied Photovoltaics


Book Description

A reliable, accessible and comprehensive guide for students of photovoltaic applications and renewable energy engineering. This thoroughly considered textbook from a group of leading influential and award-winning authors is brimming with information and is carefully designed to meet the needs of its readers. Along with exercises and references at the end of each chapter, the book features a set of detailed technical appendices that provide essential equations, data sources and standards. Starting from basics with 'The Characteristics of Sunlight' the reader is guided step-by-step through semiconductors and p-n junctions; the behaviour of solar cells; cell properties ad design; and PV cell interconnection and module fabrication. The book covers stand-alone photovoltaic systems; specific purpose photovoltaic systems; remote are power supply systems; and grid-connected photovoltaic systems. There is also a section on photovoltaic water pumping system components and design. Applied Photovolatics is well illustrated and readable with an abundance of diagrams and illustrations, and will provide the reader with all the information needed to start working with photovoltaics.




Applied Photovoltaics


Book Description

First Published in 2006. Routledge is an imprint of Taylor & Francis, an informa company.




Photovoltaics


Book Description

With the explosive growth in PV (photovoltaic) installations globally, the sector continues to benefit from important improvements in manufacturing technology and the increasing efficiency of solar cells, this timely handbook brings together all the latest design, layout and construction methods for entire PV plants in a single volume. Coverage includes procedures for the design of both stand-alone and grid-connected systems as well as practical guidance on typical operational scenarios and problems encountered for optimum PV plant performance. This comprehensive resource will benefit electrical engineer and other electrical professionals in PV systems, especially designers and installers of PV plants or the product manufacturing and testing supply chain. Advanced students on renewable energy courses will find this useful background reading and it will be an invaluable desk reference for PV plant builders and owners.




Photovoltaics


Book Description

Concise introduction to the basic principles of solar energy, photovoltaic (PV) systems, PV cells, PV measurement techniques, and grid connected systems, overviewing the potential of PV electricity for students and engineers new to the topic Starting with the basic principles of solar energy, this practical text explains the fundamentals of semiconductor physics and the structure and functioning of the solar cell. It describes current measurement techniques for solar modules, and the planning and operation of grid-connected and off-grid PV systems. Key features: clarifies the technical and economic perspectives of PV energy generation, whilst providing an overview on the current economic status discusses the future development of PV, including efficient promotion instruments and price development each chapter contains various exercises and descriptive examples, with operation results from concrete PV plants an accompanying website hosting exercise solutions, links to further PV references, and free downloads of the figures and additional software www.textbook-pv.org This is an essential text for renewable energy students, technicians and engineers wanting to know how solar cells work and how to design a complete PV plant. It is also a useful resource for PV installers, planners, operators, consultants, financers, potential energy investors and politicians.




Applied Solar Energy


Book Description




Photovoltaic Systems


Book Description

This textbook provides students with an introduction to the fundamentals and applications of solar photovoltaic systems, connecting the theory of solar photovoltaics and the practical applications of this very important source of energy. Chapters are written concisely in straightforward language that provides clear explanations of the concepts and principles, with an emphasis on humanitarian applications of photovoltaic systems and a focus on relatively small size systems that will make the book relatable to readers. It begins with an introduction and overview of the fundamentals of solar cell fabrication, module design, and performance along with an evaluation of solar resources. The book then moves on to address the details of individual components of photovoltaic systems, design of off-grid, hybrid, and distributed photovoltaic systems, and grid-tied photovoltaic systems based on the National Electrical Code (NEC). Coverage also includes a techno-economic analysis of solar photovoltaics, a discussion of the challenges and probable solutions of photovoltaic penetration into the utility grid, and an exploration of the potential of photovoltaic systems. Photovoltaic Systems: Fundamentals and Applications is designed to be used as an introductory textbook and professional training manual offering mathematical and conceptual insights that can be used to teach concepts, aid understanding of fundamentals, and act as a guide for sizing and designing practical systems.




Nanostructured Solar Cells


Book Description

Nanostructured solar cells are very important in renewable energy sector as well as in environmental aspects, because it is environment friendly. The nano-grating structures (such as triangular or conical shaped) have a gradual change in refractive index which acts as a multilayer antireflective coating that is leading to reduced light reflection losses over broadband ranges of wavelength and angle of incidence. There are different types of losses in solar cells that always reduce the conversion efficiency, but the light reflection loss is the most important factor that decreases the conversion efficiency of solar cells significantly. The antireflective coating is an optical coating which is applied to the surface of lenses or any optical devices to reduce the light reflection losses. This coating assists for the light trapping capturing capacity or improves the efficiency of optical devices, such as lenses or solar cells. Hence, the multilayer antireflective coatings can reduce the light reflection losses and increases the conversion efficiency of nanostructured solar cells.




Reducing the Effects of Climate Change Using Building-Integrated and Building-Applied Photovoltaics in the Power Supply


Book Description

This book looks at the success and continuing potential of photovoltaic (PV) technology in combating climate change by harnessing solar energy through building-integrated (BIPV) and building-applied photovoltaics (BAPV). With PV global capacity soaring from 940 GW in 2021 to 1100 GW in 2022 and projected to reach 1456 GW by the end of 2023, the world is witnessing an unprecedented shift towards renewable energy solutions. Today, no single country exists without some form of PV installation, driven by reduced costs and abundant free sunshine. The book’s chapters delve into the advancements in PV technology, exploring its integration as an essential building material by examining 14 countries and regions – Brazil, The Netherlands, Austria, Poland, Argentina, Iran, Germany, Malaysia, Oman, Bahrain, India, Australia, the United Kingdom, and Egypt – and providing a comprehensive overview of their successful adoption of PV for electricity generation. Whether you’re an architect, builder, engineer, or climate advocate, this vital resource offers insights, international case studies, and a path to a greener future.




How Solar Energy Became Cheap


Book Description

Solar energy is a substantial global industry, one that has generated trade disputes among superpowers, threatened the solvency of large energy companies, and prompted serious reconsideration of electric utility regulation rooted in the 1930s. One of the biggest payoffs from solar’s success is not the clean inexpensive electricity it can produce, but the lessons it provides for innovation in other technologies needed to address climate change. Despite the large literature on solar, including analyses of increasingly detailed datasets, the question as to how solar became inexpensive and why it took so long still remains unanswered. Drawing on developments in the US, Japan, Germany, Australia, and China, this book provides a truly comprehensive and international explanation for how solar has become inexpensive. Understanding the reasons for solar’s success enables us to take full advantage of solar’s potential. It can also teach us how to support other low-carbon technologies with analogous properties, including small modular nuclear reactors and direct air capture. However, the urgency of addressing climate change means that a key challenge in applying the solar model is in finding ways to speed up innovation. Offering suggestions and policy recommendations for accelerated innovation is another key contribution of this book. This book will be of great interest to students and scholars of energy technology and innovation, climate change and energy analysis and policy, as well as practitioners and policymakers working in the existing and emerging energy industries.