Applied Statistics Manual


Book Description

This book was written to provide guidance for those who need to apply statistical methods for practical use. While the book provides detailed guidance on the use of Minitab for calculation, simply entering data into a software program is not sufficient to reliably gain knowledge from data. The software will provide an answer, but the answer may be wrong if the sample was not taken properly, the data was unsuitable for the statistical test that was performed, or the wrong test was selected. It is also possible that the answer will be correct, but misinterpreted. This book provides both guidance in applying the statistical methods described as well as instructions for performing calculations without a statistical software program such as Minitab. One of the authors is a professional statistician who spent nearly 13 years working at Minitab and the other is an experienced and certified Lean Six Sigma Master Black Belt. Together, they strive to present the knowledge of a statistician in a format that can be easily understood and applied by non-statisticians facing real-world problems. Their guidance is provided with the goal of making data analysis accessible and practical. Rather than focusing on theoretical concepts, the book delivers only the information that is critical to success for the practitioner. It is a thorough guide for those who have not yet been exposed to the value of statistics, as well as a reliable reference for those who have been introduced to statistics but are not yet confident in their abilities.




Applied Statistics


Book Description

This outline of statistics as an aid in decision making will introduce a reader with limited mathematical background to the most important modern statistical methods. This is a revised and enlarged version, with major extensions and additions, of my "Angewandte Statistik" (5th ed.), which has proved useful for research workers and for consulting statisticians. Applied statistics is at the same time a collection of applicable statistical methods and the application of these methods to measured and/or counted observations. Abstract mathematical concepts and derivations are avoided. Special emphasis is placed on the basic principles of statistical formulation, and on the explanation of the conditions under which a certain formula or a certain test is valid. Preference is given to consideration of the analysis of small sized samples and of distribution-free methods. As a text and reference this book is written for non-mathematicians, in particular for technicians, engineers, executives, students, physicians as well as researchers in other disciplines. It gives any mathematician interested in the practical uses of statistics a general account of the subject. Practical application is the main theme; thus an essential part of the book consists in the 440 fully worked-out numerical examples, some of which are very simple; the 57 exercises with solutions; a number of different compu tational aids; and an extensive bibliography and a very detailed index. In particular, a collection of 232 mathematical and mathematical-statistical tables serves to enable and to simplify the computations.




Principles of Applied Statistics


Book Description

Applied statistics is more than data analysis, but it is easy to lose sight of the big picture. David Cox and Christl Donnelly distil decades of scientific experience into usable principles for the successful application of statistics, showing how good statistical strategy shapes every stage of an investigation. As you advance from research or policy question, to study design, through modelling and interpretation, and finally to meaningful conclusions, this book will be a valuable guide. Over a hundred illustrations from a wide variety of real applications make the conceptual points concrete, illuminating your path and deepening your understanding. This book is essential reading for anyone who makes extensive use of statistical methods in their work.




Applied Statistical Methods


Book Description

Applied Statistical Methods covers the fundamental understanding of statistical methods necessary to deal with a wide variety of practical problems. This 14-chapter text presents the topics covered in a manner that stresses clarity of understanding, interpretation, and method of application. The introductory chapter illustrates the importance of statistical analysis. The next chapters introduce the methods of data summarization, including frequency distributions, cumulative frequency distributions, and measures of central tendency and variability. These topics are followed by discussions of the fundamental principles of probability, the concepts of sample spaces, outcomes, events, probability, independence of events, and the characterization of discrete and continuous random variables. Other chapters explore the distribution of several important statistics; statistical tests of hypotheses; point and interval estimation; and simple linear regression. The concluding chapters review the elements of single- and two-factor analysis of variance and the design of analysis of variance experiments. This book is intended primarily for advanced undergraduate and graduate students in the mathematical, physical, and engineering sciences, as well as in economics, business, and related areas. Researchers and line personnel in industry and government will find this book useful in self-study.




Introduction to Applied Statistics


Book Description

This text is aimed at students in medicine, biology and the social sciences as well as those planning to specialize in applied statistics. It covers the basics of the design and analysis of surveys and experiments and provides an understanding of the basic principles of modeling and inference. Practical advice is provided on how to design a study, collect data, record observations accurately, detect errors, construct appropriate models, and interpret the results. The text contains many illustrative examples and exercises relating statistical principles to research. A companion web site is available with links to data sets, R codes, and an instructor's manual with teaching hints and solutions.




Applied Statistics Using SPSS, STATISTICA and MATLAB


Book Description

Assuming no previous statistics education, this practical reference provides a comprehensive introduction and tutorial on the main statistical analysis topics, demonstrating their solution with the most common software package. Intended for anyone needing to apply statistical analysis to a large variety of science and enigineering problems, the book explains and shows how to use SPSS, MATLAB, STATISTICA and R for analysis such as data description, statistical inference, classification and regression, factor analysis, survival data and directional statistics. It concisely explains key concepts and methods, illustrated by practical examples using real data, and includes a CD-ROM with software tools and data sets used in the examples and exercises. Readers learn which software tools to apply and also gain insights into the comparative capabilities of the primary software packages.




Applied Statistics for Engineers and Scientists


Book Description

For courses in Probability and Statistics. This applied text for engineers and scientists, written in a non-theoretical manner, focuses on underlying principles that are important to students in a wide range of disciplines. It emphasizes the interpretation of results, the presentation and evaluation of assumptions, and the discussion of what should be done if the assumptions are violated. Integration of spreadsheet and statistical software (Microsoft Excel and Minitab) as well as in-depth coverage of quality and experimental design complete this treatment of statistics.




Applied Statistics Using R


Book Description

If you want to learn to use R for data analysis but aren’t sure how to get started, this practical book will help you find the right path through your data. Drawing on real-world data to show you how to use different techniques in practice, it helps you progress your programming and statistics knowledge so you can apply the most appropriate tools in your research. It starts with descriptive statistics and moves through regression to advanced techniques such as structural equation modelling and Bayesian statistics, all with digestible mathematical detail for beginner researchers. The book: Shows you how to use R packages and apply functions, adjusting them to suit different datasets. Gives you the tools to try new statistical techniques and empowers you to become confident using them. Encourages you to learn by doing when running and adapting the authors’ own code. Equips you with solutions to overcome the potential challenges of working with real data that may be messy or imperfect. Accompanied by online resources including screencast tutorials of R that give you step by step guidance and R scripts and datasets for you to practice with, this book is a perfect companion for any student of applied statistics or quantitative research methods courses.




Foundational and Applied Statistics for Biologists Using R


Book Description

Full of biological applications, exercises, and interactive graphical examples, this text presents comprehensive coverage of both modern analytical methods and statistical foundations. The author harnesses the inherent properties of the R environment to enable students to examine the code of complicated procedures step by step and thus better understand the process of obtaining analysis results. The graphical capabilities of R are used to provide interactive demonstrations of simple to complex statistical concepts. R code and other materials are available online.




R Companion to Elementary Applied Statistics


Book Description

The R Companion to Elementary Applied Statistics includes traditional applications covered in elementary statistics courses as well as some additional methods that address questions that might arise during or after the application of commonly used methods. Beginning with basic tasks and computations with R, readers are then guided through ways to bring data into R, manipulate the data as needed, perform common statistical computations and elementary exploratory data analysis tasks, prepare customized graphics, and take advantage of R for a wide range of methods that find use in many elementary applications of statistics. Features: Requires no familiarity with R or programming to begin using this book. Can be used as a resource for a project-based elementary applied statistics course, or for researchers and professionals who wish to delve more deeply into R. Contains an extensive array of examples that illustrate ideas on various ways to use pre-packaged routines, as well as on developing individualized code. Presents quite a few methods that may be considered non-traditional, or advanced. Includes accompanying carefully documented script files that contain code for all examples presented, and more. R is a powerful and free product that is gaining popularity across the scientific community in both the professional and academic arenas. Statistical methods discussed in this book are used to introduce the fundamentals of using R functions and provide ideas for developing further skills in writing R code. These ideas are illustrated through an extensive collection of examples. About the Author: Christopher Hay-Jahans received his Doctor of Arts in mathematics from Idaho State University in 1999. After spending three years at University of South Dakota, he moved to Juneau, Alaska, in 2002 where he has taught a wide range of undergraduate courses at University of Alaska Southeast.