Approaches to the Conformational Analysis of Biopharmaceuticals


Book Description

The activity of many biopharmaceutical polymers is dependent on conformation, and the next several years will see increased interest in the conformational analysis of these polymers resulting from the development of biosimilar or "follow-on" biological products. While a wide variety of approaches to analysis exists, finding the most viable ones wou




Biophysical Characterization of Proteins in Developing Biopharmaceuticals


Book Description

Biophysical Characterization of Proteins in Developing Biopharmaceuticals, Second Edition, presents the latest on the analysis and characterization of the higher-order structure (HOS) or conformation of protein based drugs. Starting from the very basics of protein structure, this book explains the best way to achieve this goal using key methods commonly employed in the biopharmaceutical industry. This book will help today's industrial scientists plan a career in this industry and successfully implement these biophysical methodologies. This updated edition has been fully revised, with new chapters focusing on the use of chromatography and electrophoresis and the biophysical characterization of very large biopharmaceuticals. In addition, best practices of applying statistical analysis to biophysical characterization data is included, along with practical issues associated with the concept of a biopharmaceutical's developability and the technical decision-making process needed when dealing with biophysical characterization data. - Presents basic protein characterization methods and tools applicable to (bio)pharmaceutical research and development - Highlights the capabilities and limitations of each technique - Discusses the underlining science of each tool - Empowers industrial biophysical chemists by providing a roadmap for applying biophysical tools - Outlines the needs for new characterization and analytical tools in the biopharmaceutical industry




Chemical Modification of Biological Polymers


Book Description

Examining the chemical modification of biological polymers and the emerging applications of this technology, Chemical Modification of Biological Polymers reflects the change in emphasis in this subsection of biotechnology from the study of protein structure and function toward applications in therapeutics and diagnostics. HighlightsThe basic organi




Approaches to the Conformational Analysis of Biopharmaceuticals


Book Description

The activity of many biopharmaceutical polymers is dependent on conformation, and the next several years will see increased interest in the conformational analysis of these polymers resulting from the development of biosimilar or "follow-on" biological products. While a wide variety of approaches to analysis exists, finding the most viable ones would be much easier with a consolidated reference that details the benefits and cost of each approach, with an emphasis on real results and real products. Explores the Growing Role of Conformational Analysis in Comparing Generic Biopharmaceuticals Approaches to the Conformational Analysis of Biopharmaceuticals gathers the most useful techniques and methods into a single volume, putting the greatest emphasis on those approaches that have proven the most fruitful. Rather than cover specific uses of techniques in detail, this book provides commercial biotechnologists and researchers with the information and references they need to make good choices about the technology they choose to use. With a large number of references that direct readers to primary source material, it includes studies drawn from the gamut of current literature, covering physical methods, such as differential scanning calorimetry, light scanning, and analytical ultracentrifugation. It also addresses chemical methods, such as hydrogen–deuterium exchange and trace labeling, along with infrared, ultraviolet, and Raman spectroscopy. Written by Roger Lundblad, a true pioneer in protein science, this volume supplies the necessary information researchers need to access when deciding on the most cost-effective approach, including: Comparability of biopharmaceuticals Characterization of follow-on biologics Quality attributes of protein biopharmaceuticals Confrontational analysis of biopharmaceutical products With a clear focus on relevant commercial biotechnology, this book belongs on the shelves of those serious researchers who are paving the way for the next generation of biopharmaceutical polymers.




Chemical Reagents for Protein Modification


Book Description

The use of the chemical modification of proteins has evolved over the past 80 years, benefiting from advances in analytical, physical, and organic chemistry. Over the past 30 years, the use of chemical reagents to modify proteins has been crucial in determining the function and structure of purified proteins. This groundbreaking work is part of the




Chemical Reagents for Protein Modification, Fourth Edition


Book Description

The use of the chemical modification of proteins has evolved over the past 80 years, benefiting from advances in analytical, physical, and organic chemistry. Over the past 30 years, the use of chemical reagents to modify proteins has been crucial in determining the function and structure of purified proteins. This groundbreaking work is part of the foundation of emerging disciplines of proteomics, chemical biology, structure biology, and chemical proteomics. Chemical Reagents for Protein Modification, Fourth Edition provides a comprehensive review of reagents used for the chemical modification of proteins, representing a major revision of the work presented in previous editions. The completely updated Fourth Edition is substantially larger and includes five new chapters: Alkylating Agents Acylating Agents Nitration and Nitrosylation Oxidation Modification of Proteins with Reducing Agents There is greatly increased coverage of the chemical modification of cysteine, which is critical for bioconjugate synthesis. The chapter on reduction also provides information necessary for bioconjugate synthesis as well as for the processing of inclusion bodies. The book places emphasis on conditions that affect the specificity of the chemical modification of proteins, such as solvent and temperature. The format has been markedly revised, presenting information based on the chemical nature of the modifying material and on the amino acid residue modified. This new version has increased significance to biopharmaceuticals. Much of the information is in tabular form, which enables the rapid location of cited material.




Biotechnology of Plasma Proteins


Book Description

The fractionation of human blood plasma can be considered to be a mature industry, with the basic technology, alcohol fractionation, dating back at least to the 1940s. Many of the products described in the current work have been approved biologics since the 1950s. The information gathered from the development of plasma proteins has proved vital to




Single Nucleotide Polymorphisms


Book Description

This book explores the importance of Single Nucleotide Polymorphisms (SNPs) in biomedical research. As SNP technologies have evolved from labor intensive, expensive, time-consuming processes to relatively inexpensive methods, SNP discovery has exploded. In terms of human biology, this research, particularly since the completion of the Human Genome Project, has provided a detailed understanding of evolutionary forces that have generated SNPs. It also has shown how SNPs shape human variation. The ability to inexpensively generate and analyze vast amounts of genetic data is poised to transform our understanding of human evolution and biology. “Single Nucleotide Polymorphisms” covers a broad survey of SNPs and their classification into synonymous and non-synonymous; the role of SNPs in human disease; case studies providing specific examples of synonymous and non-synonymous SNPs associated with human diseases or affecting therapeutic interventions; mechanisms by which synonymous mutations affect protein levels or protein folding which affect human physiology and response to therapy; and the role of SNPs in personalized medicine. Understanding what SNPs are, how they have been shaped is necessary for an increasingly expanding audience. This research will revolutionize the future of medicine. Chapter 4 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com. SNPs Ability to Influence Disease Risk: Breaking the Silence on Synonymous Mutations in Cancer" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Mass Spectrometry in Biopharmaceutical Analysis


Book Description

Biopharmaceuticals are a unique class of compounds due to their extreme structural complexity. The current text puts together a variety of the state‐of‐the art approaches that use mass spectrometry to evaluate various aspects of biopharmaceutical products ranging from monitoring stress‐related structural changes to their quantitation in pharmacokinetic studies.




Development of Biopharmaceutical Drug-Device Products


Book Description

The biotechnology/biopharmaceutical sector has tremendously grown which led to the invention of engineered antibodies such as Antibody Drug Conjugates (ADCs), Bispecific T-cell engager (BITES), Dual Variable Domain (DVD) antibodies, and fusion proteins that are currently being used as therapeutic agents for immunology, oncology and other disease conditions. Regulatory agencies have raised the bar for the development and manufacture of antibody-based products, expecting to see the use of Quality by Design (QbD) elements demonstrating an in-depth understanding of product and process based on sound science. Drug delivery systems have become an increasingly important part of the therapy and most biopharmaceuticals for self-administration are being marketed as combination products. A survey of the market indicates that there is a strong need for a new book that will provide “one stop shopping” for the latest information and knowledge of the scientific and engineering advances made over the last few years in the area of biopharmaceutical product development. The new book entitled Development of Biopharmaceutical Drug Device Products is a reference text for scientists and engineers in the biopharmaceutical industry, academia or regulatory agencies. With insightful chapters from experts in the field, this new book reviews first principles, covers recent technological advancements and provides case studies and regulatory strategies relating to the development and manufacture of antibody-based products. It covers topics such as the importance of early preformulation studies during drug discovery to influence molecular selection for development, formulation strategies for new modalities, and the analytical techniques used to characterize them. It also addresses important considerations for later stage development such as the development of robust formulations and processes, including process engineering and modeling of manufacturing unit operations, the design of analytical comparability studies, and characterization of primary containers (pre-filled syringes and vials).Finally, the latter half of the book reviews key considerations to ensure the development and approval of a patient-centered delivery system design. This involves the evolving regulatory framework with perspectives from both the US and EU industry experts, the role of international standards, design control/risk management, human factors and its importance in the product development and regulatory approval process, as well as review of the risk-based approach to bridging between devices used in clinical trials and the to-be-marketed device. Finally, case studies are provided throughout.The typical readership would have biology and/or engineering degrees and would include researchers, scientific leaders, industry specialists and technology developers working in the biopharmaceutical field.